Spaces:
svjack
/
Runtime error

yuandong513
feat: init
17cd746
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import traceback
import time
import torch
import os
import argparse
import mcubes
import trimesh
import numpy as np
from PIL import Image
from glob import glob
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from accelerate.logging import get_logger
from lam.runners.infer.head_utils import prepare_motion_seqs, preprocess_image, prepare_gaga_motion_seqs
from .base_inferrer import Inferrer
from lam.datasets.cam_utils import build_camera_principle, build_camera_standard, surrounding_views_linspace, create_intrinsics
from lam.utils.logging import configure_logger
from lam.runners import REGISTRY_RUNNERS
from lam.utils.video import images_to_video
from lam.utils.hf_hub import wrap_model_hub
from lam.models.modeling_lam import ModelLAM
from safetensors.torch import load_file
import moviepy.editor as mpy
logger = get_logger(__name__)
def parse_configs():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str)
parser.add_argument('--infer', type=str)
args, unknown = parser.parse_known_args()
cfg = OmegaConf.create()
cli_cfg = OmegaConf.from_cli(unknown)
# parse from ENV
if os.environ.get('APP_INFER') is not None:
args.infer = os.environ.get('APP_INFER')
if os.environ.get('APP_MODEL_NAME') is not None:
cli_cfg.model_name = os.environ.get('APP_MODEL_NAME')
if args.config is not None:
cfg = OmegaConf.load(args.config)
cfg_train = OmegaConf.load(args.config)
cfg.source_size = cfg_train.dataset.source_image_res
cfg.render_size = cfg_train.dataset.render_image.high
_relative_path = os.path.join(cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split('_')[-1])
cfg.save_tmp_dump = os.path.join("exps", 'save_tmp', _relative_path)
cfg.image_dump = os.path.join("exps", 'images', _relative_path)
cfg.video_dump = os.path.join("exps", 'videos', _relative_path)
cfg.mesh_dump = os.path.join("exps", 'meshes', _relative_path)
if args.infer is not None:
cfg_infer = OmegaConf.load(args.infer)
cfg.merge_with(cfg_infer)
cfg.setdefault("save_tmp_dump", os.path.join("exps", cli_cfg.model_name, 'save_tmp'))
cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, 'images'))
cfg.setdefault('video_dump', os.path.join("dumps", cli_cfg.model_name, 'videos'))
cfg.setdefault('mesh_dump', os.path.join("dumps", cli_cfg.model_name, 'meshes'))
cfg.motion_video_read_fps = 6
cfg.merge_with(cli_cfg)
"""
[required]
model_name: str
image_input: str
export_video: bool
export_mesh: bool
[special]
source_size: int
render_size: int
video_dump: str
mesh_dump: str
[default]
render_views: int
render_fps: int
mesh_size: int
mesh_thres: float
frame_size: int
logger: str
"""
cfg.setdefault('logger', 'INFO')
# assert not (args.config is not None and args.infer is not None), "Only one of config and infer should be provided"
assert cfg.model_name is not None, "model_name is required"
if not os.environ.get('APP_ENABLED', None):
assert cfg.image_input is not None, "image_input is required"
assert cfg.export_video or cfg.export_mesh, \
"At least one of export_video or export_mesh should be True"
cfg.app_enabled = False
else:
cfg.app_enabled = True
return cfg
def count_parameters_excluding_modules(model, exclude_names=[]):
"""
Counts the number of parameters in a PyTorch model, excluding specified modules by name.
Parameters:
- model (torch.nn.Module): The PyTorch model instance.
- exclude_names (list of str): List of module names to exclude from the parameter count.
Returns:
- int: Total number of parameters in the model, excluding specified modules.
"""
total_size_bytes = 0
total_size_bits = 0
for name, module in model.named_modules():
# Check if the module name should be excluded
# print(name)
if any(exclude_name in name for exclude_name in exclude_names):
continue
# Add up the sizes of the parameters if the module is not excluded
for param in module.parameters():
total_size_bytes += param.numel() # * param.element_size()
if param.is_floating_point():
total_size_bits += param.numel() # * torch.finfo(param.dtype).bits
else:
total_size_bits += param.numel() # * torch.iinfo(param.dtype).bits
# Convert bytes to megabytes
total_size_mb = total_size_bytes / (1024 ** 2)
print("==="*16*3, f"\nTotal number of parameters: {total_size_mb}M", "\n"+"==="*16*3)
print(f"model size: {total_size_bits} / bit | {total_size_bits / 1e6:.2f} / MB")
return total_size_mb
@REGISTRY_RUNNERS.register('infer.lam')
class LAMInferrer(Inferrer):
EXP_TYPE: str = 'lam'
def __init__(self):
super().__init__()
self.cfg = parse_configs()
"""
configure_logger(
stream_level=self.cfg.logger,
log_level=self.cfg.logger,
)
"""
self.model: LAMInferrer = self._build_model(self.cfg).to(self.device)
def _build_model(self, cfg):
"""
from lam.models import model_dict
hf_model_cls = wrap_model_hub(model_dict[self.EXP_TYPE])
model = hf_model_cls.from_pretrained(cfg.model_name)
"""
from lam.models import ModelLAM
model = ModelLAM(**cfg.model)
# total_params = count_parameters_excluding_modules(model, [])
# total_params = count_parameters_excluding_modules(model, ['encoder'])
resume = os.path.join(cfg.model_name, "model.safetensors")
print("==="*16*3)
print("loading pretrained weight from:", resume)
if resume.endswith('safetensors'):
ckpt = load_file(resume, device='cpu')
else:
ckpt = torch.load(resume, map_location='cpu')
state_dict = model.state_dict()
for k, v in ckpt.items():
if k in state_dict:
if state_dict[k].shape == v.shape:
state_dict[k].copy_(v)
else:
print(f"WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.")
else:
print(f"WARN] unexpected param {k}: {v.shape}")
print("finish loading pretrained weight from:", resume)
print("==="*16*3)
return model
def _default_source_camera(self, dist_to_center: float = 2.0, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, D_cam_raw)
canonical_camera_extrinsics = torch.tensor([[
[1, 0, 0, 0],
[0, 0, -1, -dist_to_center],
[0, 1, 0, 0],
]], dtype=torch.float32, device=device)
canonical_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _default_render_cameras(self, n_views: int, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, M, D_cam_render)
render_camera_extrinsics = surrounding_views_linspace(n_views=n_views, device=device)
render_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0).repeat(render_camera_extrinsics.shape[0], 1, 1)
render_cameras = build_camera_standard(render_camera_extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
def infer_planes(self, image: torch.Tensor, source_cam_dist: float):
N = image.shape[0]
source_camera = self._default_source_camera(dist_to_center=source_cam_dist, batch_size=N, device=self.device)
planes = self.model.forward_planes(image, source_camera)
assert N == planes.shape[0]
return planes
def infer_video(self, planes: torch.Tensor, frame_size: int, render_size: int, render_views: int, render_fps: int, dump_video_path: str):
N = planes.shape[0]
render_cameras = self._default_render_cameras(n_views=render_views, batch_size=N, device=self.device)
render_anchors = torch.zeros(N, render_cameras.shape[1], 2, device=self.device)
render_resolutions = torch.ones(N, render_cameras.shape[1], 1, device=self.device) * render_size
render_bg_colors = torch.ones(N, render_cameras.shape[1], 1, device=self.device, dtype=torch.float32) * 0. # 1.
frames = []
for i in range(0, render_cameras.shape[1], frame_size):
frames.append(
self.model.synthesizer(
planes=planes,
cameras=render_cameras[:, i:i+frame_size],
anchors=render_anchors[:, i:i+frame_size],
resolutions=render_resolutions[:, i:i+frame_size],
bg_colors=render_bg_colors[:, i:i+frame_size],
region_size=render_size,
)
)
# merge frames
frames = {
k: torch.cat([r[k] for r in frames], dim=1)
for k in frames[0].keys()
}
# dump
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
for k, v in frames.items():
if k == 'images_rgb':
images_to_video(
images=v[0],
output_path=dump_video_path,
fps=render_fps,
gradio_codec=self.cfg.app_enabled,
)
def infer_mesh(self, planes: torch.Tensor, mesh_size: int, mesh_thres: float, dump_mesh_path: str):
grid_out = self.model.synthesizer.forward_grid(
planes=planes,
grid_size=mesh_size,
)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=self.device).unsqueeze(0)
vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1)
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
# dump
os.makedirs(os.path.dirname(dump_mesh_path), exist_ok=True)
mesh.export(dump_mesh_path)
def save_imgs_2_video(self, imgs, v_pth, fps):
img_lst = [imgs[i] for i in range(imgs.shape[0])]
# Convert the list of NumPy arrays to a list of ImageClip objects
clips = [mpy.ImageClip(img).set_duration(0.1) for img in img_lst] # 0.1 seconds per frame
# Concatenate the ImageClips into a single VideoClip
video = mpy.concatenate_videoclips(clips, method="compose")
# Write the VideoClip to a file
video.write_videofile(v_pth, fps=fps) # setting fps to 10 as example
def infer_single(self, image_path: str,
motion_seqs_dir,
motion_img_dir,
motion_video_read_fps,
export_video: bool,
export_mesh: bool,
dump_tmp_dir:str, # require by extracting motion seq from video, to save some results
dump_image_dir:str,
dump_video_path: str,
dump_mesh_path: str,
gaga_track_type: str):
source_size = self.cfg.source_size
render_size = self.cfg.render_size
# render_views = self.cfg.render_views
render_fps = self.cfg.render_fps
# mesh_size = self.cfg.mesh_size
# mesh_thres = self.cfg.mesh_thres
# frame_size = self.cfg.frame_size
# source_cam_dist = self.cfg.source_cam_dist if source_cam_dist is None else source_cam_dist
aspect_standard = 1.0/1.0
motion_img_need_mask = self.cfg.get("motion_img_need_mask", False) # False
vis_motion = self.cfg.get("vis_motion", False) # False
save_ply = self.cfg.get("save_ply", False) # False
save_img = self.cfg.get("save_img", False) # False
# mask_path = image_path.replace("/images/", "/mask/").replace(".png", ".jpg")
rendered_bg = 1.
ref_bg = 1.
mask_path = image_path.replace("/images/", "/fg_masks/").replace(".jpg", ".png")
if ref_bg < 1.:
if "VFHQ_TEST" in image_path:
mask_path = image_path.replace("/VFHQ_TEST/", "/mask/").replace("/images/", "/mask/").replace(".png", ".jpg")
else:
mask_path = image_path.replace("/vfhq_test_nooffset_export/", "/mask/").replace("/images/", "/mask/").replace(".png", ".jpg")
if not os.path.exists(mask_path):
print("Warning: Mask path not exists:", mask_path)
mask_path = None
else:
print("load mask from:", mask_path)
# prepare reference image
if "hdtf" in image_path:
uid = image_path.split('/')[-3]
split0 = uid.replace(uid.split('_')[-1], '0')
print("==="*16*3, "\n"+image_path, uid, split0)
image_path = image_path.replace(uid, split0)
mask_path = mask_path.replace(uid, split0)
print(image_path, "\n"+"==="*16*3)
print(mask_path, "\n"+"==="*16*3)
if hasattr(self.cfg.model, "use_albedo_input") and (self.cfg.model.get("use_albedo_input", False)):
image_path = image_path.replace("/images/", "/images_hydelight/")
image, _, _, shape_param = preprocess_image(image_path, mask_path=mask_path, intr=None, pad_ratio=0, bg_color=ref_bg,
max_tgt_size=None, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
render_tgt_size=source_size, multiply=14, need_mask=True, get_shape_param=True)
# save masked image for vis
save_ref_img_path = os.path.join(dump_tmp_dir, "refer_" + os.path.basename(image_path))
vis_ref_img = (image[0].permute(1, 2 ,0).cpu().detach().numpy() * 255).astype(np.uint8)
Image.fromarray(vis_ref_img).save(save_ref_img_path)
# prepare motion seq
test_sample=self.cfg.get("test_sample", True)
# test_sample=True
if gaga_track_type == "":
print("==="*16*3, "\nuse vhap tracked results!", "\n"+"==="*16*3)
src = image_path.split('/')[-3]
driven = motion_seqs_dir.split('/')[-2]
src_driven = [src, driven]
motion_seq = prepare_motion_seqs(motion_seqs_dir, motion_img_dir, save_root=dump_tmp_dir, fps=motion_video_read_fps,
bg_color=rendered_bg, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0],
render_image_res=render_size, multiply=16,
need_mask=motion_img_need_mask, vis_motion=vis_motion,
shape_param=shape_param, test_sample=test_sample, cross_id=self.cfg.get("cross_id", False), src_driven=src_driven)
else:
print("==="*16*3, "\nuse gaga tracked results:", gaga_track_type, "\n"+"==="*16*3)
motion_seq = prepare_gaga_motion_seqs(motion_seqs_dir, motion_img_dir, save_root=dump_tmp_dir, fps=motion_video_read_fps,
bg_color=rendered_bg, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0],
render_image_res=render_size, multiply=16,
need_mask=motion_img_need_mask, vis_motion=vis_motion,
shape_param=shape_param, test_sample=test_sample, gaga_track_type=gaga_track_type)
# return
motion_seq["flame_params"]["betas"] = shape_param.unsqueeze(0)
# print(motion_seq["flame_params"].keys())
start_time = time.time()
device="cuda"
dtype=torch.float32
# dtype=torch.bfloat16
self.model.to(dtype)
print("start to inference...................")
with torch.no_grad():
# TODO check device and dtype
res = self.model.infer_single_view(image.unsqueeze(0).to(device, dtype), None, None,
render_c2ws=motion_seq["render_c2ws"].to(device),
render_intrs=motion_seq["render_intrs"].to(device),
render_bg_colors=motion_seq["render_bg_colors"].to(device),
flame_params={k:v.to(device) for k, v in motion_seq["flame_params"].items()})
print(f"time elapsed: {time.time() - start_time}")
rgb = res["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
rgb = (np.clip(rgb, 0, 1.0) * 255).astype(np.uint8)
only_pred = rgb
if vis_motion:
# print(rgb.shape, motion_seq["vis_motion_render"].shape)
import cv2
vis_ref_img = np.tile(cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]), interpolation=cv2.INTER_AREA)[None, :, :, :], (rgb.shape[0], 1, 1, 1))
blend_ratio = 0.7
blend_res = ((1 - blend_ratio) * rgb + blend_ratio * motion_seq["vis_motion_render"]).astype(np.uint8)
# rgb = np.concatenate([rgb, motion_seq["vis_motion_render"], blend_res, vis_ref_img], axis=2)
rgb = np.concatenate([vis_ref_img, rgb, motion_seq["vis_motion_render"]], axis=2)
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
# images_to_video(rgb, output_path=dump_video_path, fps=render_fps, gradio_codec=False, verbose=True)
self.save_imgs_2_video(rgb, dump_video_path, render_fps)
if save_img and dump_image_dir is not None:
for i in range(rgb.shape[0]):
save_file = os.path.join(dump_image_dir, f"{i:04d}.png")
Image.fromarray(only_pred[i]).save(save_file)
if save_ply and dump_mesh_path is not None:
res["3dgs"][i][0][0].save_ply(os.path.join(dump_image_dir, f"{i:04d}.ply"))
dump_cano_dir = "./exps/cano_gs/"
if not os.path.exists(dump_cano_dir):
os.system(f"mkdir -p {dump_cano_dir}")
cano_ply_pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + ".ply")
# res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=True, offset2xyz=False)
# res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=True, offset2xyz=False, albedo2rgb=True)
cano_ply_pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + "_gs_offset.ply")
res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=False, offset2xyz=True, albedo2rgb=False)
# res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=False, offset2xyz=True)
def save_color_points(points, colors, sv_pth, sv_fd="debug_vis/dataloader/"):
points = points.squeeze().detach().cpu().numpy()
colors = colors.squeeze().detach().cpu().numpy()
sv_pth = os.path.join(sv_fd, sv_pth)
if not os.path.exists(sv_fd):
os.system(f"mkdir -p {sv_fd}")
with open(sv_pth, 'w') as of:
for point, color in zip(points, colors):
print('v', point[0], point[1], point[2], color[0], color[1], color[2], file=of)
# save canonical color point clouds
save_color_points(res['cano_gs_lst'][0].xyz, res["cano_gs_lst"][0].shs[:, 0, :], "framework_img.obj", sv_fd=dump_cano_dir)
# Export the template mesh to an OBJ file
import trimesh
vtxs = res['cano_gs_lst'][0].xyz - res['cano_gs_lst'][0].offset
vtxs = vtxs.detach().cpu().numpy()
faces = self.model.renderer.flame_model.faces.detach().cpu().numpy()
mesh = trimesh.Trimesh(vertices=vtxs, faces=faces)
mesh.export(os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + '_shaped_mesh.obj'))
# Export textured deformed mesh
import lam.models.rendering.utils.mesh_utils as mesh_utils
vtxs = res['cano_gs_lst'][0].xyz.detach().cpu()
faces = self.model.renderer.flame_model.faces.detach().cpu()
colors = res['cano_gs_lst'][0].shs.squeeze(1).detach().cpu()
pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + '_textured_mesh.obj')
print("Save textured mesh to:", pth)
mesh_utils.save_obj(pth, vtxs, faces, textures=colors, texture_type="vertex")
# if dum_mesh_path is not None:
# for idx, gs in enumerate(res["3dgs"]):
# gs.save_ply(f"{:04d}.ply")
def infer(self):
image_paths = []
# hard code
if os.path.isfile(self.cfg.image_input):
omit_prefix = os.path.dirname(self.cfg.image_input)
image_paths = [self.cfg.image_input]
else:
# ids = sorted(os.listdir(self.cfg.image_input))
# image_paths = [os.path.join(self.cfg.image_input, e, "images/00000_00.png") for e in ids]
image_paths = glob(os.path.join(self.cfg.image_input, "*.jpg"))
omit_prefix = self.cfg.image_input
"""
# image_paths = glob("train_data/demo_export/DEMOVIDEO/*/images/00000_00.png")
image_paths = glob("train_data/vfhq_test/VFHQ_TEST/Clip+G0DGRma_p48+P0+C0+F11208-11383/images/00000_00.png")
image_paths = glob("train_data/SIDE_FACE/*/images/00000_00.png")
image_paths = glob("train_data/vfhq_test/VFHQ_TEST/*/images/00000_00.png")
import json
# uids = json.load(open("./train_data/vfhq_vhap/selected_id.json", 'r'))["self_id"]
# image_paths = [os.path.join("train_data/vfhq_test/VFHQ_TEST/", uid, "images/00000_00.png") for uid in uids]
image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
# image_paths = glob("train_data/nersemble_vhap/export/017_SEN-01-cramp_small_danger_v16_DS4_whiteBg_staticOffset_maskBelowLine/images/00000_00.png")
# image_paths = glob("train_data/nersemble_vhap/export/374_SEN-01-cramp_small_danger_v16_DS4_whiteBg_staticOffset_maskBelowLine/images/00000_00.png")
image_paths = glob("train_data/nersemble_vhap/export/375_SEN-01-cramp_small_danger_v16_DS4_whiteBg_staticOffset_maskBelowLine/images/00000_00.png")
image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
"""
# image_paths = glob("train_data/hdtf_test/export/*/images/00000_00.png")
image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png") # [0:1]
# image_paths = glob("train_data/vfhq_test/VFHQ_TEST/*/images/00000_00.png")
print(len(image_paths), image_paths)
# image_paths = ["train_data/vfhq_test/VFHQ_TEST/Clip+VjvX4tzzlbo+P2+C0+F5669-5935/images/00000_00.png"]
# image_paths = ["train_data/vfhq_test/VFHQ_TEST/Clip+KSF3tPr9zAk+P0+C2+F8769-8880/images/00000_00.png"]
image_paths = ["train_data/vfhq_test/VFHQ_TEST/Clip+G0DGRma_p48+P0+C0+F11208-11383/images/00000_00.png"]
image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
uids = ['Clip+1qf8dZpLED0+P2+C1+F5731-5855', 'Clip+8vcxTHoDadk+P3+C0+F27918-28036', 'Clip+gsHu2fb3aj0+P0+C0+F17563-17742']
image_paths = ["train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png".replace("*", item) for item in uids]
image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
image_paths = glob("train_data/test_2w_cases/*/images/00000_00.png")
# if os.path.isfile(self.cfg.image_input):
# omit_prefix = os.path.dirname(self.cfg.image_input)
# image_paths.append(self.cfg.image_input)
# else:
# omit_prefix = self.cfg.image_input
# suffixes = ('.jpg', '.jpeg', '.png', '.webp')
# for root, dirs, files in os.walk(self.cfg.image_input):
# for file in files:
# if file.endswith(suffixes):
# image_paths.append(os.path.join(root, file))
# image_paths.sort()
# alloc to each DDP worker
# image_paths = image_paths[self.accelerator.process_index::self.accelerator.num_processes]
if "hdtf" in image_paths[0]:
image_paths = image_paths[self.cfg.get("rank", 0)::self.cfg.get("nodes", 1)]
gaga_track_type = self.cfg.get("gaga_track_type", "")
if gaga_track_type is None:
gaga_track_type = ""
print("==="*16*3, "\nUse gaga_track_type:", gaga_track_type, "\n"+"==="*16*3)
if self.cfg.get("cross_id", False):
import json
cross_id_lst = json.load(open("train_data/Cross-identity-info.json", 'r'))
src2driven = {item["src"]: item["driven"] for item in cross_id_lst}
for image_path in tqdm(image_paths, disable=not self.accelerator.is_local_main_process):
try:
# self.cfg.motion_seqs_dir = image_path.replace("/images/00000_00.png", "/flame_param")
motion_seqs_dir = self.cfg.motion_seqs_dir
if "VFHQ_TEST" in image_path or "vfhq_test_nooffset_export" in image_path or "hdtf" in image_path:
motion_seqs_dir = os.path.join(*image_path.split('/')[:-2], "flame_param")
# read shape_param
if self.cfg.get("cross_id", False):
src = motion_seqs_dir.split('/')[-2]
driven = src2driven[src]
motion_seqs_dir = motion_seqs_dir.replace(src, driven)
print("motion_seqs_dir:", motion_seqs_dir)
# prepare dump paths
image_name = os.path.basename(image_path)
uid = image_name.split('.')[0]
subdir_path = os.path.dirname(image_path).replace(omit_prefix, '')
subdir_path = subdir_path[1:] if subdir_path.startswith('/') else subdir_path
# hard code
subdir_path = gaga_track_type
if self.cfg.get("cross_id", False):
subdir_path = "cross_id"
print("==="*16*3, "\n"+ "subdir_path:", subdir_path, "\n"+"==="*16*3)
uid = os.path.basename(os.path.dirname(os.path.dirname(image_path)))
print("subdir_path and uid:", subdir_path, uid)
dump_video_path = os.path.join(
self.cfg.video_dump,
subdir_path,
f'{uid}.mp4',
)
dump_image_dir = os.path.join(
self.cfg.image_dump,
subdir_path,
f'{uid}'
)
dump_tmp_dir = os.path.join(
self.cfg.image_dump,
subdir_path,
"tmp_res"
)
dump_mesh_path = os.path.join(
self.cfg.mesh_dump,
subdir_path,
# f'{uid}.ply',
)
os.makedirs(dump_image_dir, exist_ok=True)
os.makedirs(dump_tmp_dir, exist_ok=True)
os.makedirs(dump_mesh_path, exist_ok=True)
# if os.path.exists(dump_video_path):
# print(f"skip:{image_path}")
# continue
self.infer_single(
image_path,
motion_seqs_dir=motion_seqs_dir,
motion_img_dir=self.cfg.motion_img_dir,
motion_video_read_fps=self.cfg.motion_video_read_fps,
export_video=self.cfg.export_video,
export_mesh=self.cfg.export_mesh,
dump_tmp_dir=dump_tmp_dir,
dump_image_dir=dump_image_dir,
dump_video_path=dump_video_path,
dump_mesh_path=dump_mesh_path,
gaga_track_type=gaga_track_type
)
except:
traceback.print_exc()