Spaces:
svjack
/
Runtime error

File size: 13,943 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import json
import os.path as osp
import time
import torch
import numpy as np
from tqdm import tqdm

import torchvision.transforms as transforms
from torch.utils.data import DataLoader, DistributedSampler
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.nn.functional as F

# private package
from external.landmark_detection.conf import *
from external.landmark_detection.lib.dataset import AlignmentDataset
from external.landmark_detection.lib.backbone import StackedHGNetV1
from external.landmark_detection.lib.loss import *
from external.landmark_detection.lib.metric import NME, FR_AUC
from external.landmark_detection.lib.utils import convert_secs2time
from external.landmark_detection.lib.utils import AverageMeter


def get_config(args):
    config = None
    config_name = args.config_name
    config = Alignment(args)


    return config


def get_dataset(config, tsv_file, image_dir, loader_type, is_train):
    dataset = None
    if loader_type == "alignment":
        dataset = AlignmentDataset(
            tsv_file,
            image_dir,
            transforms.Compose([transforms.ToTensor()]),
            config.width,
            config.height,
            config.channels,
            config.means,
            config.scale,
            config.classes_num,
            config.crop_op,
            config.aug_prob,
            config.edge_info,
            config.flip_mapping,
            is_train,
            encoder_type=config.encoder_type
        )
    else:
        assert False
    return dataset


def get_dataloader(config, data_type, world_rank=0, world_size=1):
    loader = None
    if data_type == "train":
        dataset = get_dataset(
            config,
            config.train_tsv_file,
            config.train_pic_dir,
            config.loader_type,
            is_train=True)
        if world_size > 1:
            sampler = DistributedSampler(dataset, rank=world_rank, num_replicas=world_size, shuffle=True)
            loader = DataLoader(dataset, sampler=sampler, batch_size=config.batch_size // world_size,
                                num_workers=config.train_num_workers, pin_memory=True, drop_last=True)
        else:
            loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True,
                                num_workers=config.train_num_workers)
    elif data_type == "val":
        dataset = get_dataset(
            config,
            config.val_tsv_file,
            config.val_pic_dir,
            config.loader_type,
            is_train=False)
        loader = DataLoader(dataset, shuffle=False, batch_size=config.val_batch_size,
                            num_workers=config.val_num_workers)
    elif data_type == "test":
        dataset = get_dataset(
            config,
            config.test_tsv_file,
            config.test_pic_dir,
            config.loader_type,
            is_train=False)
        loader = DataLoader(dataset, shuffle=False, batch_size=config.test_batch_size,
                            num_workers=config.test_num_workers)
    else:
        assert False
    return loader


def get_optimizer(config, net):
    params = net.parameters()

    optimizer = None
    if config.optimizer == "sgd":
        optimizer = optim.SGD(
            params,
            lr=config.learn_rate,
            momentum=config.momentum,
            weight_decay=config.weight_decay,
            nesterov=config.nesterov)
    elif config.optimizer == "adam":
        optimizer = optim.Adam(
            params,
            lr=config.learn_rate)
    elif config.optimizer == "rmsprop":
        optimizer = optim.RMSprop(
            params,
            lr=config.learn_rate,
            momentum=config.momentum,
            alpha=config.alpha,
            eps=config.epsilon,
            weight_decay=config.weight_decay
        )
    else:
        assert False
    return optimizer


def get_scheduler(config, optimizer):
    if config.scheduler == "MultiStepLR":
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=config.milestones, gamma=config.gamma)
    else:
        assert False
    return scheduler


def get_net(config):
    net = None
    if config.net == "stackedHGnet_v1":
        net = StackedHGNetV1(config=config,
                             classes_num=config.classes_num,
                             edge_info=config.edge_info,
                             nstack=config.nstack,
                             add_coord=config.add_coord,
                             decoder_type=config.decoder_type)
    else:
        assert False
    return net


def get_criterions(config):
    criterions = list()
    for k in range(config.label_num):
        if config.criterions[k] == "AWingLoss":
            criterion = AWingLoss()
        elif config.criterions[k] == "smoothl1":
            criterion = SmoothL1Loss()
        elif config.criterions[k] == "l1":
            criterion = F.l1_loss
        elif config.criterions[k] == 'l2':
            criterion = F.mse_loss
        elif config.criterions[k] == "STARLoss":
            criterion = STARLoss(dist=config.star_dist, w=config.star_w)
        elif config.criterions[k] == "STARLoss_v2":
            criterion = STARLoss_v2(dist=config.star_dist, w=config.star_w)
        else:
            assert False
        criterions.append(criterion)
    return criterions


def set_environment(config):
    if config.device_id >= 0:
        assert torch.cuda.is_available() and torch.cuda.device_count() > config.device_id
        torch.cuda.empty_cache()
        config.device = torch.device("cuda", config.device_id)
        config.use_gpu = True
    else:
        config.device = torch.device("cpu")
        config.use_gpu = False

    torch.set_default_dtype(torch.float32)
    torch.set_default_tensor_type(torch.FloatTensor)
    torch.set_flush_denormal(True)  # ignore extremely small value
    torch.backends.cudnn.benchmark = True  # This flag allows you to enable the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware.
    torch.autograd.set_detect_anomaly(True)


def forward(config, test_loader, net):
    # ave_metrics = [[0, 0] for i in range(config.label_num)]
    list_nmes = [[] for i in range(config.label_num)]
    metric_nme = NME(nme_left_index=config.nme_left_index, nme_right_index=config.nme_right_index)
    metric_fr_auc = FR_AUC(data_definition=config.data_definition)

    output_pd = None

    net = net.float().to(config.device)
    net.eval()
    dataset_size = len(test_loader.dataset)
    batch_size = test_loader.batch_size
    if config.logger is not None:
        config.logger.info("Forward process, Dataset size: %d, Batch size: %d" % (dataset_size, batch_size))
    for i, sample in enumerate(tqdm(test_loader)):
        input = sample["data"].float().to(config.device, non_blocking=True)
        labels = list()
        if isinstance(sample["label"], list):
            for label in sample["label"]:
                label = label.float().to(config.device, non_blocking=True)
                labels.append(label)
        else:
            label = sample["label"].float().to(config.device, non_blocking=True)
            for k in range(label.shape[1]):
                labels.append(label[:, k])
        labels = config.nstack * labels

        with torch.no_grad():
            output, heatmap, landmarks = net(input)

            # metrics
        for k in range(config.label_num):
            if config.metrics[k] is not None:
                list_nmes[k] += metric_nme.test(output[k], labels[k])

    metrics = [[np.mean(nmes), ] + metric_fr_auc.test(nmes) for nmes in list_nmes]

    return output_pd, metrics


def compute_loss(config, criterions, output, labels, heatmap=None, landmarks=None):
    batch_weight = 1.0
    sum_loss = 0
    losses = list()
    for k in range(config.label_num):
        if config.criterions[k] in ['smoothl1', 'l1', 'l2', 'WingLoss', 'AWingLoss']:
            loss = criterions[k](output[k], labels[k])
        elif config.criterions[k] in ["STARLoss", "STARLoss_v2"]:
            _k = int(k / 3) if config.use_AAM else k
            loss = criterions[k](heatmap[_k], labels[k])
        else:
            assert NotImplementedError
        loss = batch_weight * loss
        sum_loss += config.loss_weights[k] * loss
        loss = float(loss.data.cpu().item())
        losses.append(loss)
    return losses, sum_loss


def forward_backward(config, train_loader, net_module, net, net_ema, criterions, optimizer, epoch):
    train_model_time = AverageMeter()
    ave_losses = [0] * config.label_num

    net_module = net_module.float().to(config.device)
    net_module.train(True)
    dataset_size = len(train_loader.dataset)
    batch_size = config.batch_size  # train_loader.batch_size
    batch_num = max(dataset_size / max(batch_size, 1), 1)
    if config.logger is not None:
        config.logger.info(config.note)
        config.logger.info("Forward Backward process, Dataset size: %d, Batch size: %d" % (dataset_size, batch_size))

    iter_num = len(train_loader)
    epoch_start_time = time.time()
    if net_module != net:
        train_loader.sampler.set_epoch(epoch)
    for iter, sample in enumerate(train_loader):
        iter_start_time = time.time()
        # input
        input = sample["data"].float().to(config.device, non_blocking=True)
        # labels
        labels = list()
        if isinstance(sample["label"], list):
            for label in sample["label"]:
                label = label.float().to(config.device, non_blocking=True)
                labels.append(label)
        else:
            label = sample["label"].float().to(config.device, non_blocking=True)
            for k in range(label.shape[1]):
                labels.append(label[:, k])
        labels = config.nstack * labels
        # forward
        output, heatmaps, landmarks = net_module(input)

        # loss
        losses, sum_loss = compute_loss(config, criterions, output, labels, heatmaps, landmarks)
        ave_losses = list(map(sum, zip(ave_losses, losses)))

        # backward
        optimizer.zero_grad()
        with torch.autograd.detect_anomaly():
            sum_loss.backward()
        # torch.nn.utils.clip_grad_norm_(net_module.parameters(), 128.0)
        optimizer.step()

        if net_ema is not None:
            accumulate_net(net_ema, net, 0.5 ** (config.batch_size / 10000.0))
            # accumulate_net(net_ema, net, 0.5 ** (8 / 10000.0))

        # output
        train_model_time.update(time.time() - iter_start_time)
        last_time = convert_secs2time(train_model_time.avg * (iter_num - iter - 1), True)
        if iter % config.display_iteration == 0 or iter + 1 == len(train_loader):
            if config.logger is not None:
                losses_str = ' Average Loss: {:.6f}'.format(sum(losses) / len(losses))
                for k, loss in enumerate(losses):
                    losses_str += ', L{}: {:.3f}'.format(k, loss)
                config.logger.info(
                    ' -->>[{:03d}/{:03d}][{:03d}/{:03d}]'.format(epoch, config.max_epoch, iter, iter_num) \
                    + last_time + losses_str)

    epoch_end_time = time.time()
    epoch_total_time = epoch_end_time - epoch_start_time
    epoch_load_data_time = epoch_total_time - train_model_time.sum
    if config.logger is not None:
        config.logger.info("Train/Epoch: %d/%d, Average total time cost per iteration in this epoch: %.6f" % (
            epoch, config.max_epoch, epoch_total_time / iter_num))
        config.logger.info("Train/Epoch: %d/%d, Average loading data time cost per iteration in this epoch: %.6f" % (
            epoch, config.max_epoch, epoch_load_data_time / iter_num))
        config.logger.info("Train/Epoch: %d/%d, Average training model time cost per iteration in this epoch: %.6f" % (
            epoch, config.max_epoch, train_model_time.avg))

    ave_losses = [loss / iter_num for loss in ave_losses]
    if config.logger is not None:
        config.logger.info("Train/Epoch: %d/%d, Average Loss in this epoch: %.6f" % (
            epoch, config.max_epoch, sum(ave_losses) / len(ave_losses)))
    for k, ave_loss in enumerate(ave_losses):
        if config.logger is not None:
            config.logger.info("Train/Loss%03d in this epoch: %.6f" % (k, ave_loss))


def accumulate_net(model1, model2, decay):
    """

        operation: model1 = model1 * decay + model2 * (1 - decay)

    """
    par1 = dict(model1.named_parameters())
    par2 = dict(model2.named_parameters())
    for k in par1.keys():
        par1[k].data.mul_(decay).add_(
            other=par2[k].data.to(par1[k].data.device),
            alpha=1 - decay)

    par1 = dict(model1.named_buffers())
    par2 = dict(model2.named_buffers())
    for k in par1.keys():
        if par1[k].data.is_floating_point():
            par1[k].data.mul_(decay).add_(
                other=par2[k].data.to(par1[k].data.device),
                alpha=1 - decay)
        else:
            par1[k].data = par2[k].data.to(par1[k].data.device)


def save_model(config, epoch, net, net_ema, optimizer, scheduler, pytorch_model_path):
    # save pytorch model
    state = {
        "net": net.state_dict(),
        "optimizer": optimizer.state_dict(),
        "scheduler": scheduler.state_dict(),
        "epoch": epoch
    }
    if config.ema:
        state["net_ema"] = net_ema.state_dict()

    torch.save(state, pytorch_model_path)
    if config.logger is not None:
        config.logger.info("Epoch: %d/%d, model saved in this epoch" % (epoch, config.max_epoch))