File size: 13,943 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import json
import os.path as osp
import time
import torch
import numpy as np
from tqdm import tqdm
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, DistributedSampler
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.nn.functional as F
# private package
from external.landmark_detection.conf import *
from external.landmark_detection.lib.dataset import AlignmentDataset
from external.landmark_detection.lib.backbone import StackedHGNetV1
from external.landmark_detection.lib.loss import *
from external.landmark_detection.lib.metric import NME, FR_AUC
from external.landmark_detection.lib.utils import convert_secs2time
from external.landmark_detection.lib.utils import AverageMeter
def get_config(args):
config = None
config_name = args.config_name
config = Alignment(args)
return config
def get_dataset(config, tsv_file, image_dir, loader_type, is_train):
dataset = None
if loader_type == "alignment":
dataset = AlignmentDataset(
tsv_file,
image_dir,
transforms.Compose([transforms.ToTensor()]),
config.width,
config.height,
config.channels,
config.means,
config.scale,
config.classes_num,
config.crop_op,
config.aug_prob,
config.edge_info,
config.flip_mapping,
is_train,
encoder_type=config.encoder_type
)
else:
assert False
return dataset
def get_dataloader(config, data_type, world_rank=0, world_size=1):
loader = None
if data_type == "train":
dataset = get_dataset(
config,
config.train_tsv_file,
config.train_pic_dir,
config.loader_type,
is_train=True)
if world_size > 1:
sampler = DistributedSampler(dataset, rank=world_rank, num_replicas=world_size, shuffle=True)
loader = DataLoader(dataset, sampler=sampler, batch_size=config.batch_size // world_size,
num_workers=config.train_num_workers, pin_memory=True, drop_last=True)
else:
loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True,
num_workers=config.train_num_workers)
elif data_type == "val":
dataset = get_dataset(
config,
config.val_tsv_file,
config.val_pic_dir,
config.loader_type,
is_train=False)
loader = DataLoader(dataset, shuffle=False, batch_size=config.val_batch_size,
num_workers=config.val_num_workers)
elif data_type == "test":
dataset = get_dataset(
config,
config.test_tsv_file,
config.test_pic_dir,
config.loader_type,
is_train=False)
loader = DataLoader(dataset, shuffle=False, batch_size=config.test_batch_size,
num_workers=config.test_num_workers)
else:
assert False
return loader
def get_optimizer(config, net):
params = net.parameters()
optimizer = None
if config.optimizer == "sgd":
optimizer = optim.SGD(
params,
lr=config.learn_rate,
momentum=config.momentum,
weight_decay=config.weight_decay,
nesterov=config.nesterov)
elif config.optimizer == "adam":
optimizer = optim.Adam(
params,
lr=config.learn_rate)
elif config.optimizer == "rmsprop":
optimizer = optim.RMSprop(
params,
lr=config.learn_rate,
momentum=config.momentum,
alpha=config.alpha,
eps=config.epsilon,
weight_decay=config.weight_decay
)
else:
assert False
return optimizer
def get_scheduler(config, optimizer):
if config.scheduler == "MultiStepLR":
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=config.milestones, gamma=config.gamma)
else:
assert False
return scheduler
def get_net(config):
net = None
if config.net == "stackedHGnet_v1":
net = StackedHGNetV1(config=config,
classes_num=config.classes_num,
edge_info=config.edge_info,
nstack=config.nstack,
add_coord=config.add_coord,
decoder_type=config.decoder_type)
else:
assert False
return net
def get_criterions(config):
criterions = list()
for k in range(config.label_num):
if config.criterions[k] == "AWingLoss":
criterion = AWingLoss()
elif config.criterions[k] == "smoothl1":
criterion = SmoothL1Loss()
elif config.criterions[k] == "l1":
criterion = F.l1_loss
elif config.criterions[k] == 'l2':
criterion = F.mse_loss
elif config.criterions[k] == "STARLoss":
criterion = STARLoss(dist=config.star_dist, w=config.star_w)
elif config.criterions[k] == "STARLoss_v2":
criterion = STARLoss_v2(dist=config.star_dist, w=config.star_w)
else:
assert False
criterions.append(criterion)
return criterions
def set_environment(config):
if config.device_id >= 0:
assert torch.cuda.is_available() and torch.cuda.device_count() > config.device_id
torch.cuda.empty_cache()
config.device = torch.device("cuda", config.device_id)
config.use_gpu = True
else:
config.device = torch.device("cpu")
config.use_gpu = False
torch.set_default_dtype(torch.float32)
torch.set_default_tensor_type(torch.FloatTensor)
torch.set_flush_denormal(True) # ignore extremely small value
torch.backends.cudnn.benchmark = True # This flag allows you to enable the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware.
torch.autograd.set_detect_anomaly(True)
def forward(config, test_loader, net):
# ave_metrics = [[0, 0] for i in range(config.label_num)]
list_nmes = [[] for i in range(config.label_num)]
metric_nme = NME(nme_left_index=config.nme_left_index, nme_right_index=config.nme_right_index)
metric_fr_auc = FR_AUC(data_definition=config.data_definition)
output_pd = None
net = net.float().to(config.device)
net.eval()
dataset_size = len(test_loader.dataset)
batch_size = test_loader.batch_size
if config.logger is not None:
config.logger.info("Forward process, Dataset size: %d, Batch size: %d" % (dataset_size, batch_size))
for i, sample in enumerate(tqdm(test_loader)):
input = sample["data"].float().to(config.device, non_blocking=True)
labels = list()
if isinstance(sample["label"], list):
for label in sample["label"]:
label = label.float().to(config.device, non_blocking=True)
labels.append(label)
else:
label = sample["label"].float().to(config.device, non_blocking=True)
for k in range(label.shape[1]):
labels.append(label[:, k])
labels = config.nstack * labels
with torch.no_grad():
output, heatmap, landmarks = net(input)
# metrics
for k in range(config.label_num):
if config.metrics[k] is not None:
list_nmes[k] += metric_nme.test(output[k], labels[k])
metrics = [[np.mean(nmes), ] + metric_fr_auc.test(nmes) for nmes in list_nmes]
return output_pd, metrics
def compute_loss(config, criterions, output, labels, heatmap=None, landmarks=None):
batch_weight = 1.0
sum_loss = 0
losses = list()
for k in range(config.label_num):
if config.criterions[k] in ['smoothl1', 'l1', 'l2', 'WingLoss', 'AWingLoss']:
loss = criterions[k](output[k], labels[k])
elif config.criterions[k] in ["STARLoss", "STARLoss_v2"]:
_k = int(k / 3) if config.use_AAM else k
loss = criterions[k](heatmap[_k], labels[k])
else:
assert NotImplementedError
loss = batch_weight * loss
sum_loss += config.loss_weights[k] * loss
loss = float(loss.data.cpu().item())
losses.append(loss)
return losses, sum_loss
def forward_backward(config, train_loader, net_module, net, net_ema, criterions, optimizer, epoch):
train_model_time = AverageMeter()
ave_losses = [0] * config.label_num
net_module = net_module.float().to(config.device)
net_module.train(True)
dataset_size = len(train_loader.dataset)
batch_size = config.batch_size # train_loader.batch_size
batch_num = max(dataset_size / max(batch_size, 1), 1)
if config.logger is not None:
config.logger.info(config.note)
config.logger.info("Forward Backward process, Dataset size: %d, Batch size: %d" % (dataset_size, batch_size))
iter_num = len(train_loader)
epoch_start_time = time.time()
if net_module != net:
train_loader.sampler.set_epoch(epoch)
for iter, sample in enumerate(train_loader):
iter_start_time = time.time()
# input
input = sample["data"].float().to(config.device, non_blocking=True)
# labels
labels = list()
if isinstance(sample["label"], list):
for label in sample["label"]:
label = label.float().to(config.device, non_blocking=True)
labels.append(label)
else:
label = sample["label"].float().to(config.device, non_blocking=True)
for k in range(label.shape[1]):
labels.append(label[:, k])
labels = config.nstack * labels
# forward
output, heatmaps, landmarks = net_module(input)
# loss
losses, sum_loss = compute_loss(config, criterions, output, labels, heatmaps, landmarks)
ave_losses = list(map(sum, zip(ave_losses, losses)))
# backward
optimizer.zero_grad()
with torch.autograd.detect_anomaly():
sum_loss.backward()
# torch.nn.utils.clip_grad_norm_(net_module.parameters(), 128.0)
optimizer.step()
if net_ema is not None:
accumulate_net(net_ema, net, 0.5 ** (config.batch_size / 10000.0))
# accumulate_net(net_ema, net, 0.5 ** (8 / 10000.0))
# output
train_model_time.update(time.time() - iter_start_time)
last_time = convert_secs2time(train_model_time.avg * (iter_num - iter - 1), True)
if iter % config.display_iteration == 0 or iter + 1 == len(train_loader):
if config.logger is not None:
losses_str = ' Average Loss: {:.6f}'.format(sum(losses) / len(losses))
for k, loss in enumerate(losses):
losses_str += ', L{}: {:.3f}'.format(k, loss)
config.logger.info(
' -->>[{:03d}/{:03d}][{:03d}/{:03d}]'.format(epoch, config.max_epoch, iter, iter_num) \
+ last_time + losses_str)
epoch_end_time = time.time()
epoch_total_time = epoch_end_time - epoch_start_time
epoch_load_data_time = epoch_total_time - train_model_time.sum
if config.logger is not None:
config.logger.info("Train/Epoch: %d/%d, Average total time cost per iteration in this epoch: %.6f" % (
epoch, config.max_epoch, epoch_total_time / iter_num))
config.logger.info("Train/Epoch: %d/%d, Average loading data time cost per iteration in this epoch: %.6f" % (
epoch, config.max_epoch, epoch_load_data_time / iter_num))
config.logger.info("Train/Epoch: %d/%d, Average training model time cost per iteration in this epoch: %.6f" % (
epoch, config.max_epoch, train_model_time.avg))
ave_losses = [loss / iter_num for loss in ave_losses]
if config.logger is not None:
config.logger.info("Train/Epoch: %d/%d, Average Loss in this epoch: %.6f" % (
epoch, config.max_epoch, sum(ave_losses) / len(ave_losses)))
for k, ave_loss in enumerate(ave_losses):
if config.logger is not None:
config.logger.info("Train/Loss%03d in this epoch: %.6f" % (k, ave_loss))
def accumulate_net(model1, model2, decay):
"""
operation: model1 = model1 * decay + model2 * (1 - decay)
"""
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(
other=par2[k].data.to(par1[k].data.device),
alpha=1 - decay)
par1 = dict(model1.named_buffers())
par2 = dict(model2.named_buffers())
for k in par1.keys():
if par1[k].data.is_floating_point():
par1[k].data.mul_(decay).add_(
other=par2[k].data.to(par1[k].data.device),
alpha=1 - decay)
else:
par1[k].data = par2[k].data.to(par1[k].data.device)
def save_model(config, epoch, net, net_ema, optimizer, scheduler, pytorch_model_path):
# save pytorch model
state = {
"net": net.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"epoch": epoch
}
if config.ema:
state["net_ema"] = net_ema.state_dict()
torch.save(state, pytorch_model_path)
if config.logger is not None:
config.logger.info("Epoch: %d/%d, model saved in this epoch" % (epoch, config.max_epoch))
|