Spaces:
svjack
/
Runtime error

File size: 12,708 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import sys
import cv2
import math
import copy
import hashlib
import imageio
import numpy as np
import pandas as pd
from scipy import interpolate
from PIL import Image, ImageEnhance, ImageFile

import torch
import torch.nn.functional as F
from torch.utils.data import Dataset

ImageFile.LOAD_TRUNCATED_IMAGES = True

sys.path.append("./")
from external.landmark_detection.lib.dataset.augmentation import Augmentation
from external.landmark_detection.lib.dataset.encoder import get_encoder


class AlignmentDataset(Dataset):

    def __init__(self, tsv_flie, image_dir="", transform=None,

                 width=256, height=256, channels=3,

                 means=(127.5, 127.5, 127.5), scale=1 / 127.5,

                 classes_num=None, crop_op=True, aug_prob=0.0, edge_info=None, flip_mapping=None, is_train=True,

                 encoder_type='default',

                 ):
        super(AlignmentDataset, self).__init__()
        self.use_AAM = True
        self.encoder_type = encoder_type
        self.encoder = get_encoder(height, width, encoder_type=encoder_type)
        self.items = pd.read_csv(tsv_flie, sep="\t")
        self.image_dir = image_dir
        self.landmark_num = classes_num[0]
        self.transform = transform

        self.image_width = width
        self.image_height = height
        self.channels = channels
        assert self.image_width == self.image_height

        self.means = means
        self.scale = scale

        self.aug_prob = aug_prob
        self.edge_info = edge_info
        self.is_train = is_train
        std_lmk_5pts = np.array([
            196.0, 226.0,
            316.0, 226.0,
            256.0, 286.0,
            220.0, 360.4,
            292.0, 360.4], np.float32) / 256.0 - 1.0
        std_lmk_5pts = np.reshape(std_lmk_5pts, (5, 2))  # [-1 1]
        target_face_scale = 1.0 if crop_op else 1.25

        self.augmentation = Augmentation(
            is_train=self.is_train,
            aug_prob=self.aug_prob,
            image_size=self.image_width,
            crop_op=crop_op,
            std_lmk_5pts=std_lmk_5pts,
            target_face_scale=target_face_scale,
            flip_rate=0.5,
            flip_mapping=flip_mapping,
            random_shift_sigma=0.05,
            random_rot_sigma=math.pi / 180 * 18,
            random_scale_sigma=0.1,
            random_gray_rate=0.2,
            random_occ_rate=0.4,
            random_blur_rate=0.3,
            random_gamma_rate=0.2,
            random_nose_fusion_rate=0.2)

    def _circle(self, img, pt, sigma=1.0, label_type='Gaussian'):
        # Check that any part of the gaussian is in-bounds
        tmp_size = sigma * 3
        ul = [int(pt[0] - tmp_size), int(pt[1] - tmp_size)]
        br = [int(pt[0] + tmp_size + 1), int(pt[1] + tmp_size + 1)]
        if (ul[0] > img.shape[1] - 1 or ul[1] > img.shape[0] - 1 or
                br[0] - 1 < 0 or br[1] - 1 < 0):
            # If not, just return the image as is
            return img

        # Generate gaussian
        size = 2 * tmp_size + 1
        x = np.arange(0, size, 1, np.float32)
        y = x[:, np.newaxis]
        x0 = y0 = size // 2
        # The gaussian is not normalized, we want the center value to equal 1
        if label_type == 'Gaussian':
            g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
        else:
            g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5)

        # Usable gaussian range
        g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
        g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
        # Image range
        img_x = max(0, ul[0]), min(br[0], img.shape[1])
        img_y = max(0, ul[1]), min(br[1], img.shape[0])

        img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = 255 * g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
        return img

    def _polylines(self, img, lmks, is_closed, color=255, thickness=1, draw_mode=cv2.LINE_AA,

                   interpolate_mode=cv2.INTER_AREA, scale=4):
        h, w = img.shape
        img_scale = cv2.resize(img, (w * scale, h * scale), interpolation=interpolate_mode)
        lmks_scale = (lmks * scale + 0.5).astype(np.int32)
        cv2.polylines(img_scale, [lmks_scale], is_closed, color, thickness * scale, draw_mode)
        img = cv2.resize(img_scale, (w, h), interpolation=interpolate_mode)
        return img

    def _generate_edgemap(self, points, scale=0.25, thickness=1):
        h, w = self.image_height, self.image_width
        edgemaps = []
        for is_closed, indices in self.edge_info:
            edgemap = np.zeros([h, w], dtype=np.float32)
            # align_corners: False.
            part = copy.deepcopy(points[np.array(indices)])

            part = self._fit_curve(part, is_closed)
            part[:, 0] = np.clip(part[:, 0], 0, w - 1)
            part[:, 1] = np.clip(part[:, 1], 0, h - 1)
            edgemap = self._polylines(edgemap, part, is_closed, 255, thickness)

            edgemaps.append(edgemap)
        edgemaps = np.stack(edgemaps, axis=0) / 255.0
        edgemaps = torch.from_numpy(edgemaps).float().unsqueeze(0)
        edgemaps = F.interpolate(edgemaps, size=(int(w * scale), int(h * scale)), mode='bilinear',
                                 align_corners=False).squeeze()
        return edgemaps

    def _fit_curve(self, lmks, is_closed=False, density=5):
        try:
            x = lmks[:, 0].copy()
            y = lmks[:, 1].copy()
            if is_closed:
                x = np.append(x, x[0])
                y = np.append(y, y[0])
            tck, u = interpolate.splprep([x, y], s=0, per=is_closed, k=3)
            # bins = (x.shape[0] - 1) * density + 1
            # lmk_x, lmk_y = interpolate.splev(np.linspace(0, 1, bins), f)
            intervals = np.array([])
            for i in range(len(u) - 1):
                intervals = np.concatenate((intervals, np.linspace(u[i], u[i + 1], density, endpoint=False)))
            if not is_closed:
                intervals = np.concatenate((intervals, [u[-1]]))
            lmk_x, lmk_y = interpolate.splev(intervals, tck, der=0)
            # der_x, der_y = interpolate.splev(intervals, tck, der=1)
            curve_lmks = np.stack([lmk_x, lmk_y], axis=-1)
            # curve_ders = np.stack([der_x, der_y], axis=-1)
            # origin_indices = np.arange(0, curve_lmks.shape[0], density)

            return curve_lmks
        except:
            return lmks

    def _image_id(self, image_path):
        if not os.path.exists(image_path):
            image_path = os.path.join(self.image_dir, image_path)
        return hashlib.md5(open(image_path, "rb").read()).hexdigest()

    def _load_image(self, image_path):
        if not os.path.exists(image_path):
            image_path = os.path.join(self.image_dir, image_path)

        try:
            # img = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)#HWC, BGR, [0-255]
            img = cv2.imread(image_path, cv2.IMREAD_COLOR)  # HWC, BGR, [0-255]
            assert img is not None and len(img.shape) == 3 and img.shape[2] == 3
        except:
            try:
                img = imageio.imread(image_path)  # HWC, RGB, [0-255]
                img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)  # HWC, BGR, [0-255]
                assert img is not None and len(img.shape) == 3 and img.shape[2] == 3
            except:
                try:
                    gifImg = imageio.mimread(image_path)  # BHWC, RGB, [0-255]
                    img = gifImg[0]  # HWC, RGB, [0-255]
                    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)  # HWC, BGR, [0-255]
                    assert img is not None and len(img.shape) == 3 and img.shape[2] == 3
                except:
                    img = None
        return img

    def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center):
        cosv = math.cos(angle)
        sinv = math.sin(angle)

        fx, fy = from_center
        tx, ty = to_center

        acos = scale * cosv
        asin = scale * sinv

        a0 = acos
        a1 = -asin
        a2 = tx - acos * fx + asin * fy + shift_xy[0]

        b0 = asin
        b1 = acos
        b2 = ty - asin * fx - acos * fy + shift_xy[1]

        rot_scale_m = np.array([
            [a0, a1, a2],
            [b0, b1, b2],
            [0.0, 0.0, 1.0]
        ], np.float32)
        return rot_scale_m

    def _transformPoints2D(self, points, matrix):
        """

        points (nx2), matrix (3x3) -> points (nx2)

        """
        dtype = points.dtype

        # nx3
        points = np.concatenate([points, np.ones_like(points[:, [0]])], axis=1)
        points = points @ np.transpose(matrix)  # nx3
        points = points[:, :2] / points[:, [2, 2]]
        return points.astype(dtype)

    def _transformPerspective(self, image, matrix, target_shape):
        """

        image, matrix3x3 -> transformed_image

        """
        return cv2.warpPerspective(
            image, matrix,
            dsize=(target_shape[1], target_shape[0]),
            flags=cv2.INTER_LINEAR, borderValue=0)

    def _norm_points(self, points, h, w, align_corners=False):
        if align_corners:
            # [0, SIZE-1] -> [-1, +1]
            des_points = points / torch.tensor([w - 1, h - 1]).to(points).view(1, 2) * 2 - 1
        else:
            # [-0.5, SIZE-0.5] -> [-1, +1]
            des_points = (points * 2 + 1) / torch.tensor([w, h]).to(points).view(1, 2) - 1
        des_points = torch.clamp(des_points, -1, 1)
        return des_points

    def _denorm_points(self, points, h, w, align_corners=False):
        if align_corners:
            # [-1, +1] -> [0, SIZE-1]
            des_points = (points + 1) / 2 * torch.tensor([w - 1, h - 1]).to(points).view(1, 1, 2)
        else:
            # [-1, +1] -> [-0.5, SIZE-0.5]
            des_points = ((points + 1) * torch.tensor([w, h]).to(points).view(1, 1, 2) - 1) / 2
        return des_points

    def __len__(self):
        return len(self.items)

    def __getitem__(self, index):
        sample = dict()

        image_path = self.items.iloc[index, 0]
        landmarks_5pts = self.items.iloc[index, 1]
        landmarks_5pts = np.array(list(map(float, landmarks_5pts.split(","))), dtype=np.float32).reshape(5, 2)
        landmarks_target = self.items.iloc[index, 2]
        landmarks_target = np.array(list(map(float, landmarks_target.split(","))), dtype=np.float32).reshape(
            self.landmark_num, 2)
        scale = float(self.items.iloc[index, 3])
        center_w, center_h = float(self.items.iloc[index, 4]), float(self.items.iloc[index, 5])
        if len(self.items.iloc[index]) > 6:
            tags = np.array(list(map(lambda x: int(float(x)), self.items.iloc[index, 6].split(","))))
        else:
            tags = np.array([])

        # image & keypoints alignment
        image_path = image_path.replace('\\', '/')
        # wflw testset
        image_path = image_path.replace(
            '//msr-facestore/Workspace/MSRA_EP_Allergan/users/yanghuan/training_data/wflw/rawImages/', '')
        # trainset
        image_path = image_path.replace('./rawImages/', '')
        image_path = os.path.join(self.image_dir, image_path)

        # image path
        sample["image_path"] = image_path

        img = self._load_image(image_path)  # HWC, BGR, [0, 255]
        assert img is not None

        # augmentation
        # landmarks_target = [-0.5, edge-0.5]
        img, landmarks_target, matrix = \
            self.augmentation.process(img, landmarks_target, landmarks_5pts, scale, center_w, center_h)

        landmarks = self._norm_points(torch.from_numpy(landmarks_target), self.image_height, self.image_width)

        sample["label"] = [landmarks, ]

        if self.use_AAM:
            pointmap = self.encoder.generate_heatmap(landmarks_target)
            edgemap = self._generate_edgemap(landmarks_target)
            sample["label"] += [pointmap, edgemap]

        sample['matrix'] = matrix

        # image normalization
        img = img.transpose(2, 0, 1).astype(np.float32)  # CHW, BGR, [0, 255]
        img[0, :, :] = (img[0, :, :] - self.means[0]) * self.scale
        img[1, :, :] = (img[1, :, :] - self.means[1]) * self.scale
        img[2, :, :] = (img[2, :, :] - self.means[2]) * self.scale
        sample["data"] = torch.from_numpy(img)  # CHW, BGR, [-1, 1]

        sample["tags"] = tags

        return sample