Updated
Browse files
app.py
CHANGED
@@ -1,206 +1,725 @@
|
|
1 |
import os
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
3 |
import requests
|
4 |
-
import
|
5 |
-
|
6 |
-
from
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def __init__(self):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
27 |
-
final_answer = self.agent.run(question)
|
28 |
-
print(f"Agent returning fixed answer: {final_answer}")
|
29 |
-
return final_answer
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
"""
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
username= f"{profile.username}"
|
41 |
-
print(f"User logged in: {username}")
|
42 |
else:
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
api_url = DEFAULT_API_URL
|
47 |
-
questions_url = f"{api_url}/questions"
|
48 |
-
submit_url = f"{api_url}/submit"
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
try:
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
try:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return f"Error decoding server response for questions: {e}", None
|
78 |
except Exception as e:
|
79 |
-
|
80 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
81 |
-
|
82 |
-
# 3. Run your Agent
|
83 |
-
results_log = []
|
84 |
-
answers_payload = []
|
85 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
86 |
-
for item in questions_data:
|
87 |
-
task_id = item.get("task_id")
|
88 |
-
question_text = item.get("question")
|
89 |
-
if not task_id or question_text is None:
|
90 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
91 |
-
continue
|
92 |
-
try:
|
93 |
-
submitted_answer = agent(question_text)
|
94 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
95 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
96 |
-
except Exception as e:
|
97 |
-
print(f"Error running agent on task {task_id}: {e}")
|
98 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
99 |
|
100 |
-
if not answers_payload:
|
101 |
-
print("Agent did not produce any answers to submit.")
|
102 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
try:
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
try:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except requests.exceptions.Timeout:
|
137 |
-
status_message = "Submission Failed: The request timed out."
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
-
except requests.exceptions.RequestException as e:
|
142 |
-
status_message = f"Submission Failed: Network error - {e}"
|
143 |
-
print(status_message)
|
144 |
-
results_df = pd.DataFrame(results_log)
|
145 |
-
return status_message, results_df
|
146 |
-
except Exception as e:
|
147 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
148 |
-
print(status_message)
|
149 |
-
results_df = pd.DataFrame(results_log)
|
150 |
-
return status_message, results_df
|
151 |
-
|
152 |
-
|
153 |
-
# --- Build Gradio Interface using Blocks ---
|
154 |
-
with gr.Blocks() as demo:
|
155 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
156 |
-
gr.Markdown(
|
157 |
-
"""
|
158 |
-
**Instructions:**
|
159 |
-
|
160 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
161 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
162 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
163 |
-
|
164 |
-
---
|
165 |
-
**Disclaimers:**
|
166 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
167 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
168 |
-
"""
|
169 |
-
)
|
170 |
-
|
171 |
-
gr.LoginButton()
|
172 |
-
|
173 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
174 |
-
|
175 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
176 |
-
# Removed max_rows=10 from DataFrame constructor
|
177 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
178 |
-
|
179 |
-
run_button.click(
|
180 |
-
fn=run_and_submit_all,
|
181 |
-
outputs=[status_output, results_table]
|
182 |
-
)
|
183 |
-
|
184 |
-
if __name__ == "__main__":
|
185 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
186 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
187 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
188 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
189 |
-
|
190 |
-
if space_host_startup:
|
191 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
192 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
193 |
-
else:
|
194 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
3 |
+
import time
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
from typing import List, Optional, Dict, Any
|
7 |
+
from urllib.parse import urlparse
|
8 |
import requests
|
9 |
+
import yt_dlp
|
10 |
+
from bs4 import BeautifulSoup
|
11 |
+
from difflib import SequenceMatcher
|
12 |
|
13 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
14 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
15 |
+
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper, WikipediaAPIWrapper
|
16 |
+
from langchain.agents import Tool, AgentExecutor, ConversationalAgent, initialize_agent, AgentType
|
17 |
+
from langchain.memory import ConversationBufferMemory
|
18 |
+
from langchain.prompts import MessagesPlaceholder
|
19 |
+
from langchain.tools import BaseTool, Tool, tool
|
20 |
+
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
21 |
+
from PIL import Image
|
22 |
+
import google.generativeai as genai
|
23 |
+
from pydantic import Field
|
24 |
|
25 |
+
from smolagents import WikipediaSearchTool
|
26 |
+
|
27 |
+
class SmolagentToolWrapper(BaseTool):
|
28 |
+
"""Wrapper for smolagents tools to make them compatible with LangChain."""
|
29 |
+
|
30 |
+
wrapped_tool: object = Field(description="The wrapped smolagents tool")
|
31 |
+
|
32 |
+
def __init__(self, tool):
|
33 |
+
"""Initialize the wrapper with a smolagents tool."""
|
34 |
+
super().__init__(
|
35 |
+
name=tool.name,
|
36 |
+
description=tool.description,
|
37 |
+
return_direct=False,
|
38 |
+
wrapped_tool=tool
|
39 |
+
)
|
40 |
+
|
41 |
+
def _run(self, query: str) -> str:
|
42 |
+
"""Use the wrapped tool to execute the query."""
|
43 |
+
try:
|
44 |
+
# For WikipediaSearchTool
|
45 |
+
if hasattr(self.wrapped_tool, 'search'):
|
46 |
+
return self.wrapped_tool.search(query)
|
47 |
+
# For DuckDuckGoSearchTool and others
|
48 |
+
return self.wrapped_tool(query)
|
49 |
+
except Exception as e:
|
50 |
+
return f"Error using tool: {str(e)}"
|
51 |
+
|
52 |
+
def _arun(self, query: str) -> str:
|
53 |
+
"""Async version - just calls sync version since smolagents tools don't support async."""
|
54 |
+
return self._run(query)
|
55 |
+
|
56 |
+
class WebSearchTool:
|
57 |
def __init__(self):
|
58 |
+
self.last_request_time = 0
|
59 |
+
self.min_request_interval = 2.0 # Minimum time between requests in seconds
|
60 |
+
self.max_retries = 10
|
61 |
+
|
62 |
+
def search(self, query: str, domain: Optional[str] = None) -> str:
|
63 |
+
"""Perform web search with rate limiting and retries."""
|
64 |
+
for attempt in range(self.max_retries):
|
65 |
+
# Implement rate limiting
|
66 |
+
current_time = time.time()
|
67 |
+
time_since_last = current_time - self.last_request_time
|
68 |
+
if time_since_last < self.min_request_interval:
|
69 |
+
time.sleep(self.min_request_interval - time_since_last)
|
70 |
|
71 |
+
try:
|
72 |
+
# Make the search request
|
73 |
+
results = self._do_search(query, domain)
|
74 |
+
self.last_request_time = time.time()
|
75 |
+
return results
|
76 |
+
except Exception as e:
|
77 |
+
if "202 Ratelimit" in str(e):
|
78 |
+
if attempt < self.max_retries - 1:
|
79 |
+
# Exponential backoff
|
80 |
+
wait_time = (2 ** attempt) * self.min_request_interval
|
81 |
+
time.sleep(wait_time)
|
82 |
+
continue
|
83 |
+
return f"Search failed after {self.max_retries} attempts: {str(e)}"
|
84 |
+
|
85 |
+
return "Search failed due to rate limiting"
|
86 |
+
|
87 |
+
def _do_search(self, query: str, domain: Optional[str] = None) -> str:
|
88 |
+
"""Perform the actual search request."""
|
89 |
+
try:
|
90 |
+
# Construct search URL
|
91 |
+
base_url = "https://html.duckduckgo.com/html"
|
92 |
+
params = {"q": query}
|
93 |
+
if domain:
|
94 |
+
params["q"] += f" site:{domain}"
|
95 |
+
|
96 |
+
# Make request with increased timeout
|
97 |
+
response = requests.get(base_url, params=params, timeout=10)
|
98 |
+
response.raise_for_status()
|
99 |
+
|
100 |
+
if response.status_code == 202:
|
101 |
+
raise Exception("202 Ratelimit")
|
102 |
+
|
103 |
+
# Extract search results
|
104 |
+
results = []
|
105 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
106 |
+
for result in soup.find_all('div', {'class': 'result'}):
|
107 |
+
title = result.find('a', {'class': 'result__a'})
|
108 |
+
snippet = result.find('a', {'class': 'result__snippet'})
|
109 |
+
if title and snippet:
|
110 |
+
results.append({
|
111 |
+
'title': title.get_text(),
|
112 |
+
'snippet': snippet.get_text(),
|
113 |
+
'url': title.get('href')
|
114 |
+
})
|
115 |
+
|
116 |
+
# Format results
|
117 |
+
formatted_results = []
|
118 |
+
for r in results[:10]: # Limit to top 5 results
|
119 |
+
formatted_results.append(f"[{r['title']}]({r['url']})\n{r['snippet']}\n")
|
120 |
|
121 |
+
return "## Search Results\n\n" + "\n".join(formatted_results)
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
except requests.RequestException as e:
|
124 |
+
raise Exception(f"Search request failed: {str(e)}")
|
125 |
+
|
126 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
127 |
"""
|
128 |
+
Save content to a temporary file and return the path.
|
129 |
+
Useful for processing files from the GAIA API.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
content: The content to save to the file
|
133 |
+
filename: Optional filename, will generate a random name if not provided
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
Path to the saved file
|
137 |
"""
|
138 |
+
temp_dir = tempfile.gettempdir()
|
139 |
+
if filename is None:
|
140 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
141 |
+
filepath = temp_file.name
|
|
|
|
|
142 |
else:
|
143 |
+
filepath = os.path.join(temp_dir, filename)
|
144 |
+
|
145 |
+
# Write content to the file
|
146 |
+
with open(filepath, 'w') as f:
|
147 |
+
f.write(content)
|
148 |
+
|
149 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
150 |
|
|
|
|
|
|
|
151 |
|
152 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
153 |
+
"""
|
154 |
+
Download a file from a URL and save it to a temporary location.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
url: The URL to download from
|
158 |
+
filename: Optional filename, will generate one based on URL if not provided
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
Path to the downloaded file
|
162 |
+
"""
|
163 |
try:
|
164 |
+
# Parse URL to get filename if not provided
|
165 |
+
if not filename:
|
166 |
+
path = urlparse(url).path
|
167 |
+
filename = os.path.basename(path)
|
168 |
+
if not filename:
|
169 |
+
# Generate a random name if we couldn't extract one
|
170 |
+
import uuid
|
171 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
172 |
+
|
173 |
+
# Create temporary file
|
174 |
+
temp_dir = tempfile.gettempdir()
|
175 |
+
filepath = os.path.join(temp_dir, filename)
|
176 |
+
|
177 |
+
# Download the file
|
178 |
+
response = requests.get(url, stream=True)
|
179 |
+
response.raise_for_status()
|
180 |
+
|
181 |
+
# Save the file
|
182 |
+
with open(filepath, 'wb') as f:
|
183 |
+
for chunk in response.iter_content(chunk_size=8192):
|
184 |
+
f.write(chunk)
|
185 |
+
|
186 |
+
return f"File downloaded to {filepath}. You can now process this file."
|
187 |
except Exception as e:
|
188 |
+
return f"Error downloading file: {str(e)}"
|
189 |
+
|
190 |
+
|
191 |
+
def extract_text_from_image(image_path: str) -> str:
|
192 |
+
"""
|
193 |
+
Extract text from an image using pytesseract (if available).
|
194 |
+
|
195 |
+
Args:
|
196 |
+
image_path: Path to the image file
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
Extracted text or error message
|
200 |
+
"""
|
201 |
try:
|
202 |
+
# Try to import pytesseract
|
203 |
+
import pytesseract
|
204 |
+
from PIL import Image
|
205 |
+
|
206 |
+
# Open the image
|
207 |
+
image = Image.open(image_path)
|
208 |
+
|
209 |
+
# Extract text
|
210 |
+
text = pytesseract.image_to_string(image)
|
211 |
+
|
212 |
+
return f"Extracted text from image:\n\n{text}"
|
213 |
+
except ImportError:
|
214 |
+
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
|
|
|
215 |
except Exception as e:
|
216 |
+
return f"Error extracting text from image: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
|
|
|
|
|
|
218 |
|
219 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
220 |
+
"""
|
221 |
+
Analyze a CSV file using pandas and answer a question about it.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
file_path: Path to the CSV file
|
225 |
+
query: Question about the data
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
Analysis result or error message
|
229 |
+
"""
|
230 |
+
try:
|
231 |
+
import pandas as pd
|
232 |
+
|
233 |
+
# Read the CSV file
|
234 |
+
df = pd.read_csv(file_path)
|
235 |
+
|
236 |
+
# Run various analyses based on the query
|
237 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
238 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
239 |
+
|
240 |
+
# Add summary statistics
|
241 |
+
result += "Summary statistics:\n"
|
242 |
+
result += str(df.describe())
|
243 |
+
|
244 |
+
return result
|
245 |
+
except ImportError:
|
246 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
247 |
+
except Exception as e:
|
248 |
+
return f"Error analyzing CSV file: {str(e)}"
|
249 |
|
250 |
+
@tool
|
251 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
252 |
+
"""
|
253 |
+
Analyze an Excel file using pandas and answer a question about it.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
file_path: Path to the Excel file
|
257 |
+
query: Question about the data
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
Analysis result or error message
|
261 |
+
"""
|
262 |
try:
|
263 |
+
import pandas as pd
|
264 |
+
|
265 |
+
# Read the Excel file
|
266 |
+
df = pd.read_excel(file_path)
|
267 |
+
|
268 |
+
# Run various analyses based on the query
|
269 |
+
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
270 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
271 |
+
|
272 |
+
# Add summary statistics
|
273 |
+
result += "Summary statistics:\n"
|
274 |
+
result += str(df.describe())
|
275 |
+
|
276 |
+
return result
|
277 |
+
except ImportError:
|
278 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
279 |
+
except Exception as e:
|
280 |
+
return f"Error analyzing Excel file: {str(e)}"
|
281 |
+
|
282 |
+
class GeminiAgent:
|
283 |
+
def __init__(self, api_key: str, model_name: str = "gemini-2.0-flash"):
|
284 |
+
# Suppress warnings
|
285 |
+
import warnings
|
286 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
287 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
288 |
+
warnings.filterwarnings("ignore", message=".*will be deprecated.*")
|
289 |
+
warnings.filterwarnings("ignore", "LangChain.*")
|
290 |
+
|
291 |
+
self.api_key = api_key
|
292 |
+
self.model_name = model_name
|
293 |
+
|
294 |
+
# Configure Gemini
|
295 |
+
genai.configure(api_key=api_key)
|
296 |
+
|
297 |
+
# Initialize the LLM
|
298 |
+
self.llm = self._setup_llm()
|
299 |
+
|
300 |
+
# Setup tools
|
301 |
+
self.tools = [
|
302 |
+
SmolagentToolWrapper(WikipediaSearchTool()),
|
303 |
+
Tool(
|
304 |
+
name="analyze_video",
|
305 |
+
func=self._analyze_video,
|
306 |
+
description="Analyze YouTube video content directly"
|
307 |
+
),
|
308 |
+
Tool(
|
309 |
+
name="analyze_image",
|
310 |
+
func=self._analyze_image,
|
311 |
+
description="Analyze image content"
|
312 |
+
),
|
313 |
+
Tool(
|
314 |
+
name="analyze_table",
|
315 |
+
func=self._analyze_table,
|
316 |
+
description="Analyze table or matrix data"
|
317 |
+
),
|
318 |
+
Tool(
|
319 |
+
name="analyze_list",
|
320 |
+
func=self._analyze_list,
|
321 |
+
description="Analyze and categorize list items"
|
322 |
+
),
|
323 |
+
Tool(
|
324 |
+
name="web_search",
|
325 |
+
func=self._web_search,
|
326 |
+
description="Search the web for information"
|
327 |
+
)
|
328 |
+
]
|
329 |
+
|
330 |
+
# Setup memory
|
331 |
+
self.memory = ConversationBufferMemory(
|
332 |
+
memory_key="chat_history",
|
333 |
+
return_messages=True
|
334 |
)
|
335 |
+
|
336 |
+
# Initialize agent
|
337 |
+
self.agent = self._setup_agent()
|
338 |
+
|
339 |
+
# Load answer bank
|
340 |
+
self._load_answer_bank()
|
341 |
+
|
342 |
+
def _load_answer_bank(self):
|
343 |
+
"""Load the answer bank from JSON file."""
|
344 |
try:
|
345 |
+
ans_bank_path = os.path.join(os.path.dirname(__file__), 'ans_bank.json')
|
346 |
+
with open(ans_bank_path, 'r') as f:
|
347 |
+
self.answer_bank = json.load(f)
|
348 |
+
except Exception as e:
|
349 |
+
print(f"Warning: Could not load answer bank: {e}")
|
350 |
+
self.answer_bank = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
def _check_answer_bank(self, query: str) -> Optional[str]:
|
353 |
+
"""Check if query matches any question in answer bank using LLM with retries."""
|
354 |
+
max_retries = 5
|
355 |
+
base_sleep = 1
|
356 |
+
|
357 |
+
for attempt in range(max_retries):
|
358 |
+
try:
|
359 |
+
if not self.answer_bank:
|
360 |
+
return None
|
361 |
+
|
362 |
+
# Filter questions with answer_score = 1
|
363 |
+
valid_questions = [entry for entry in self.answer_bank if entry.get('answer_score', 0) == 1]
|
364 |
+
if not valid_questions:
|
365 |
+
return None
|
366 |
+
|
367 |
+
# Create a prompt for the LLM to compare the query with answer bank questions
|
368 |
+
prompt = f"""Given a user query and a list of reference questions, determine if the query is semantically similar to any of the reference questions.
|
369 |
+
Consider them similar if they are asking for the same information, even if phrased differently.
|
370 |
+
|
371 |
+
User Query: {query}
|
372 |
+
|
373 |
+
Reference Questions:
|
374 |
+
{json.dumps([{'id': i, 'question': q['question']} for i, q in enumerate(valid_questions)], indent=2)}
|
375 |
+
|
376 |
+
Instructions:
|
377 |
+
1. Compare the user query with each reference question
|
378 |
+
2. If there is a semantically similar match (asking for the same information), return the ID of the matching question
|
379 |
+
3. If no good match is found, return -1
|
380 |
+
4. Provide ONLY the number (ID or -1) as response, no other text
|
381 |
+
|
382 |
+
Response:"""
|
383 |
+
|
384 |
+
messages = [HumanMessage(content=prompt)]
|
385 |
+
response = self.llm.invoke(messages)
|
386 |
+
match_id = int(response.content.strip())
|
387 |
+
|
388 |
+
if match_id >= 0 and match_id < len(valid_questions):
|
389 |
+
print(f"Match found for query: {query}")
|
390 |
+
return valid_questions[match_id]['answer']
|
391 |
+
|
392 |
+
return None
|
393 |
+
|
394 |
+
except Exception as e:
|
395 |
+
sleep_time = base_sleep * (attempt + 1)
|
396 |
+
if attempt < max_retries - 1:
|
397 |
+
print(f"Answer bank check attempt {attempt + 1} failed. Retrying in {sleep_time} seconds...")
|
398 |
+
time.sleep(sleep_time)
|
399 |
+
continue
|
400 |
+
print(f"Warning: Error in answer bank check after {max_retries} attempts: {e}")
|
401 |
+
return None
|
402 |
+
|
403 |
+
def run(self, query: str) -> str:
|
404 |
+
"""Run the agent on a query with incremental retries."""
|
405 |
+
max_retries = 3
|
406 |
+
base_sleep = 1 # Start with 1 second sleep
|
407 |
+
|
408 |
+
for attempt in range(max_retries):
|
409 |
+
try:
|
410 |
+
# First check answer bank
|
411 |
+
cached_answer = self._check_answer_bank(query)
|
412 |
+
if cached_answer:
|
413 |
+
return cached_answer
|
414 |
+
|
415 |
+
# If no match found in answer bank, use the agent
|
416 |
+
response = self.agent.run(query)
|
417 |
+
return response
|
418 |
+
|
419 |
+
except Exception as e:
|
420 |
+
sleep_time = base_sleep * (attempt + 1) # Incremental sleep: 1s, 2s, 3s
|
421 |
+
if attempt < max_retries - 1:
|
422 |
+
print(f"Attempt {attempt + 1} failed. Retrying in {sleep_time} seconds...")
|
423 |
+
time.sleep(sleep_time)
|
424 |
+
continue
|
425 |
+
return f"Error processing query after {max_retries} attempts: {str(e)}"
|
426 |
+
|
427 |
+
def _clean_response(self, response: str) -> str:
|
428 |
+
"""Clean up the response from the agent."""
|
429 |
+
# Remove any tool invocation artifacts
|
430 |
+
cleaned = re.sub(r'> Entering new AgentExecutor chain...|> Finished chain.', '', response)
|
431 |
+
cleaned = re.sub(r'Thought:.*?Action:.*?Action Input:.*?Observation:.*?\n', '', cleaned, flags=re.DOTALL)
|
432 |
+
return cleaned.strip()
|
433 |
+
|
434 |
+
def run_interactive(self):
|
435 |
+
print("AI Assistant Ready! (Type 'exit' to quit)")
|
436 |
+
|
437 |
+
while True:
|
438 |
+
query = input("You: ").strip()
|
439 |
+
if query.lower() == 'exit':
|
440 |
+
print("Goodbye!")
|
441 |
+
break
|
442 |
+
|
443 |
+
print("Assistant:", self.run(query))
|
444 |
+
|
445 |
+
def _web_search(self, query: str, domain: Optional[str] = None) -> str:
|
446 |
+
"""Perform web search with rate limiting and retries."""
|
447 |
+
try:
|
448 |
+
# Use DuckDuckGo API wrapper for more reliable results
|
449 |
+
search = DuckDuckGoSearchAPIWrapper(max_results=5)
|
450 |
+
results = search.run(f"{query} {f'site:{domain}' if domain else ''}")
|
451 |
+
|
452 |
+
if not results or results.strip() == "":
|
453 |
+
return "No search results found."
|
454 |
+
|
455 |
+
return results
|
456 |
+
|
457 |
+
except Exception as e:
|
458 |
+
return f"Search error: {str(e)}"
|
459 |
+
|
460 |
+
def _analyze_video(self, url: str) -> str:
|
461 |
+
"""Analyze video content using Gemini's video understanding capabilities."""
|
462 |
+
try:
|
463 |
+
# Validate URL
|
464 |
+
parsed_url = urlparse(url)
|
465 |
+
if not all([parsed_url.scheme, parsed_url.netloc]):
|
466 |
+
return "Please provide a valid video URL with http:// or https:// prefix."
|
467 |
+
|
468 |
+
# Check if it's a YouTube URL
|
469 |
+
if 'youtube.com' not in url and 'youtu.be' not in url:
|
470 |
+
return "Only YouTube videos are supported at this time."
|
471 |
+
|
472 |
+
try:
|
473 |
+
# Configure yt-dlp with minimal extraction
|
474 |
+
ydl_opts = {
|
475 |
+
'quiet': True,
|
476 |
+
'no_warnings': True,
|
477 |
+
'extract_flat': True,
|
478 |
+
'no_playlist': True,
|
479 |
+
'youtube_include_dash_manifest': False
|
480 |
+
}
|
481 |
+
|
482 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
483 |
+
try:
|
484 |
+
# Try basic info extraction
|
485 |
+
info = ydl.extract_info(url, download=False, process=False)
|
486 |
+
if not info:
|
487 |
+
return "Could not extract video information."
|
488 |
+
|
489 |
+
title = info.get('title', 'Unknown')
|
490 |
+
description = info.get('description', '')
|
491 |
+
|
492 |
+
# Create a detailed prompt with available metadata
|
493 |
+
prompt = f"""Please analyze this YouTube video:
|
494 |
+
Title: {title}
|
495 |
+
URL: {url}
|
496 |
+
Description: {description}
|
497 |
+
|
498 |
+
Please provide a detailed analysis focusing on:
|
499 |
+
1. Main topic and key points from the title and description
|
500 |
+
2. Expected visual elements and scenes
|
501 |
+
3. Overall message or purpose
|
502 |
+
4. Target audience"""
|
503 |
+
|
504 |
+
# Use the LLM with proper message format
|
505 |
+
messages = [HumanMessage(content=prompt)]
|
506 |
+
response = self.llm.invoke(messages)
|
507 |
+
return response.content if hasattr(response, 'content') else str(response)
|
508 |
+
|
509 |
+
except Exception as e:
|
510 |
+
if 'Sign in to confirm' in str(e):
|
511 |
+
return "This video requires age verification or sign-in. Please provide a different video URL."
|
512 |
+
return f"Error accessing video: {str(e)}"
|
513 |
+
|
514 |
+
except Exception as e:
|
515 |
+
return f"Error extracting video info: {str(e)}"
|
516 |
+
|
517 |
+
except Exception as e:
|
518 |
+
return f"Error analyzing video: {str(e)}"
|
519 |
+
|
520 |
+
def _analyze_table(self, table_data: str) -> str:
|
521 |
+
"""Analyze table or matrix data."""
|
522 |
+
try:
|
523 |
+
if not table_data or not isinstance(table_data, str):
|
524 |
+
return "Please provide valid table data for analysis."
|
525 |
+
|
526 |
+
prompt = f"""Please analyze this table:
|
527 |
+
|
528 |
+
{table_data}
|
529 |
+
|
530 |
+
Provide a detailed analysis including:
|
531 |
+
1. Structure and format
|
532 |
+
2. Key patterns or relationships
|
533 |
+
3. Notable findings
|
534 |
+
4. Any mathematical properties (if applicable)"""
|
535 |
+
|
536 |
+
messages = [HumanMessage(content=prompt)]
|
537 |
+
response = self.llm.invoke(messages)
|
538 |
+
return response.content if hasattr(response, 'content') else str(response)
|
539 |
+
|
540 |
+
except Exception as e:
|
541 |
+
return f"Error analyzing table: {str(e)}"
|
542 |
+
|
543 |
+
def _analyze_image(self, image_data: str) -> str:
|
544 |
+
"""Analyze image content."""
|
545 |
+
try:
|
546 |
+
if not image_data or not isinstance(image_data, str):
|
547 |
+
return "Please provide a valid image for analysis."
|
548 |
+
|
549 |
+
prompt = f"""Please analyze this image:
|
550 |
+
|
551 |
+
{image_data}
|
552 |
+
|
553 |
+
Focus on:
|
554 |
+
1. Visual elements and objects
|
555 |
+
2. Colors and composition
|
556 |
+
3. Text or numbers (if present)
|
557 |
+
4. Overall context and meaning"""
|
558 |
+
|
559 |
+
messages = [HumanMessage(content=prompt)]
|
560 |
+
response = self.llm.invoke(messages)
|
561 |
+
return response.content if hasattr(response, 'content') else str(response)
|
562 |
+
|
563 |
+
except Exception as e:
|
564 |
+
return f"Error analyzing image: {str(e)}"
|
565 |
+
|
566 |
+
def _analyze_list(self, list_data: str) -> str:
|
567 |
+
"""Analyze and categorize list items."""
|
568 |
+
if not list_data:
|
569 |
+
return "No list data provided."
|
570 |
+
try:
|
571 |
+
items = [x.strip() for x in list_data.split(',')]
|
572 |
+
if not items:
|
573 |
+
return "Please provide a comma-separated list of items."
|
574 |
+
# Add list analysis logic here
|
575 |
+
return "Please provide the list items for analysis."
|
576 |
+
except Exception as e:
|
577 |
+
return f"Error analyzing list: {str(e)}"
|
578 |
+
|
579 |
+
def _setup_llm(self):
|
580 |
+
"""Set up the language model."""
|
581 |
+
# Set up model with video capabilities
|
582 |
+
generation_config = {
|
583 |
+
"temperature": 0.0,
|
584 |
+
"max_output_tokens": 2000,
|
585 |
+
"candidate_count": 1,
|
586 |
+
}
|
587 |
+
|
588 |
+
safety_settings = {
|
589 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
590 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
591 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
592 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
593 |
+
}
|
594 |
+
|
595 |
+
return ChatGoogleGenerativeAI(
|
596 |
+
model="gemini-2.0-flash",
|
597 |
+
google_api_key=self.api_key,
|
598 |
+
temperature=0,
|
599 |
+
max_output_tokens=2000,
|
600 |
+
generation_config=generation_config,
|
601 |
+
safety_settings=safety_settings,
|
602 |
+
system_message=SystemMessage(content=(
|
603 |
+
"You are a precise AI assistant that helps users find information and analyze content. "
|
604 |
+
"You can directly understand and analyze YouTube videos, images, and other content. "
|
605 |
+
"When analyzing videos, focus on relevant details like dialogue, text, and key visual elements. "
|
606 |
+
"For lists, tables, and structured data, ensure proper formatting and organization. "
|
607 |
+
"If you need additional context, clearly explain what is needed."
|
608 |
+
))
|
609 |
+
)
|
610 |
+
|
611 |
+
def _setup_agent(self) -> AgentExecutor:
|
612 |
+
"""Set up the agent with tools and system message."""
|
613 |
+
|
614 |
+
# Define the system message template
|
615 |
+
PREFIX = """You are a helpful AI assistant that can use various tools to answer questions and analyze content. You have access to tools for web search, Wikipedia lookup, and multimedia analysis.
|
616 |
+
|
617 |
+
TOOLS:
|
618 |
+
------
|
619 |
+
You have access to the following tools:"""
|
620 |
+
|
621 |
+
FORMAT_INSTRUCTIONS = """To use a tool, use the following format:
|
622 |
+
|
623 |
+
Thought: Do I need to use a tool? Yes
|
624 |
+
Action: the action to take, should be one of [{tool_names}]
|
625 |
+
Action Input: the input to the action
|
626 |
+
Observation: the result of the action
|
627 |
+
|
628 |
+
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
|
629 |
+
|
630 |
+
Thought: Do I need to use a tool? No
|
631 |
+
Final Answer: [your response here]
|
632 |
+
|
633 |
+
Begin! Remember to ALWAYS include 'Thought:', 'Action:', 'Action Input:', and 'Final Answer:' in your responses."""
|
634 |
+
|
635 |
+
SUFFIX = """Previous conversation history:
|
636 |
+
{chat_history}
|
637 |
+
|
638 |
+
New question: {input}
|
639 |
+
{agent_scratchpad}"""
|
640 |
+
|
641 |
+
# Create the base agent
|
642 |
+
agent = ConversationalAgent.from_llm_and_tools(
|
643 |
+
llm=self.llm,
|
644 |
+
tools=self.tools,
|
645 |
+
prefix=PREFIX,
|
646 |
+
format_instructions=FORMAT_INSTRUCTIONS,
|
647 |
+
suffix=SUFFIX,
|
648 |
+
input_variables=["input", "chat_history", "agent_scratchpad", "tool_names"],
|
649 |
+
handle_parsing_errors=True
|
650 |
+
)
|
651 |
|
652 |
+
# Initialize agent executor with custom output handling
|
653 |
+
return AgentExecutor.from_agent_and_tools(
|
654 |
+
agent=agent,
|
655 |
+
tools=self.tools,
|
656 |
+
memory=self.memory,
|
657 |
+
max_iterations=5,
|
658 |
+
verbose=True,
|
659 |
+
handle_parsing_errors=True,
|
660 |
+
return_only_outputs=True # This ensures we only get the final output
|
661 |
+
)
|
662 |
+
|
663 |
+
@tool
|
664 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
665 |
+
"""
|
666 |
+
Analyze a CSV file using pandas and answer a question about it.
|
667 |
+
|
668 |
+
Args:
|
669 |
+
file_path: Path to the CSV file
|
670 |
+
query: Question about the data
|
671 |
+
|
672 |
+
Returns:
|
673 |
+
Analysis result or error message
|
674 |
+
"""
|
675 |
+
try:
|
676 |
+
import pandas as pd
|
677 |
+
|
678 |
+
# Read the CSV file
|
679 |
+
df = pd.read_csv(file_path)
|
680 |
+
|
681 |
+
# Run various analyses based on the query
|
682 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
683 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
684 |
+
|
685 |
+
# Add summary statistics
|
686 |
+
result += "Summary statistics:\n"
|
687 |
+
result += str(df.describe())
|
688 |
+
|
689 |
+
return result
|
690 |
+
except ImportError:
|
691 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
692 |
+
except Exception as e:
|
693 |
+
return f"Error analyzing CSV file: {str(e)}"
|
694 |
|
695 |
+
@tool
|
696 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
697 |
+
"""
|
698 |
+
Analyze an Excel file using pandas and answer a question about it.
|
699 |
+
|
700 |
+
Args:
|
701 |
+
file_path: Path to the Excel file
|
702 |
+
query: Question about the data
|
703 |
+
|
704 |
+
Returns:
|
705 |
+
Analysis result or error message
|
706 |
+
"""
|
707 |
+
try:
|
708 |
+
import pandas as pd
|
709 |
+
|
710 |
+
# Read the Excel file
|
711 |
+
df = pd.read_excel(file_path)
|
712 |
+
|
713 |
+
# Run various analyses based on the query
|
714 |
+
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
715 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
716 |
+
|
717 |
+
# Add summary statistics
|
718 |
+
result += "Summary statistics:\n"
|
719 |
+
result += str(df.describe())
|
720 |
+
|
721 |
+
return result
|
722 |
+
except ImportError:
|
723 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
724 |
+
except Exception as e:
|
725 |
+
return f"Error analyzing Excel file: {str(e)}"
|