stivenDR14 commited on
Commit
e0fe7b4
·
1 Parent(s): a71c291

set up spaces zero-gpu

Browse files
Files changed (1) hide show
  1. pdf_processor.py +5 -4
pdf_processor.py CHANGED
@@ -1,5 +1,6 @@
1
  import json
2
  import tempfile
 
3
  from langchain_community.document_loaders import PyPDFLoader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain_ollama import OllamaEmbeddings
@@ -143,7 +144,7 @@ class PDFProcessor:
143
  )
144
  return current_llm, embeding_model
145
 
146
-
147
  def process_pdf(self, pdf_file, chunk_size, chunk_overlap, ai_model, type_model, api_key, project_id_watsonx):
148
  defined_chunk_size = 1000
149
  defined_chunk_overlap = 150
@@ -195,7 +196,7 @@ class PDFProcessor:
195
  else:
196
  return TRANSLATIONS[self.language]["load_pdf_first"]
197
 
198
-
199
  def get_qa_response(self, message, history, ai_model, type_model, api_key, project_id_watsonx, k=4):
200
  current_llm, _ = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
201
 
@@ -219,7 +220,7 @@ class PDFProcessor:
219
 
220
  return result["result"] + "\n\nSources: " + page_labels_text
221
 
222
-
223
  def summarizer_by_k_top_n(self, ai_model, type_model, api_key, project_id_watsonx, k, summary_prompt, just_get_documments=False):
224
  if not self.vectorstore:
225
  return TRANSLATIONS[self.language]["load_pdf_first"]
@@ -256,7 +257,7 @@ class PDFProcessor:
256
  return self.summarizer_by_k_top_n(ai_model, type_model, api_key, project_id_watsonx, k, final_summary_prompt, just_get_documments)
257
 
258
 
259
-
260
  def get_specialist_opinion(self, ai_model, type_model, api_key, project_id_watsonx, specialist_prompt):
261
  questions_prompt = PromptTemplate(
262
  input_variables=["text", "specialist_prompt", "language"],
 
1
  import json
2
  import tempfile
3
+ import spaces
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_ollama import OllamaEmbeddings
 
144
  )
145
  return current_llm, embeding_model
146
 
147
+ @spaces.GPU
148
  def process_pdf(self, pdf_file, chunk_size, chunk_overlap, ai_model, type_model, api_key, project_id_watsonx):
149
  defined_chunk_size = 1000
150
  defined_chunk_overlap = 150
 
196
  else:
197
  return TRANSLATIONS[self.language]["load_pdf_first"]
198
 
199
+ @spaces.GPU
200
  def get_qa_response(self, message, history, ai_model, type_model, api_key, project_id_watsonx, k=4):
201
  current_llm, _ = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
202
 
 
220
 
221
  return result["result"] + "\n\nSources: " + page_labels_text
222
 
223
+ @spaces.GPU
224
  def summarizer_by_k_top_n(self, ai_model, type_model, api_key, project_id_watsonx, k, summary_prompt, just_get_documments=False):
225
  if not self.vectorstore:
226
  return TRANSLATIONS[self.language]["load_pdf_first"]
 
257
  return self.summarizer_by_k_top_n(ai_model, type_model, api_key, project_id_watsonx, k, final_summary_prompt, just_get_documments)
258
 
259
 
260
+ @spaces.GPU
261
  def get_specialist_opinion(self, ai_model, type_model, api_key, project_id_watsonx, specialist_prompt):
262
  questions_prompt = PromptTemplate(
263
  input_variables=["text", "specialist_prompt", "language"],