File size: 19,180 Bytes
67f0d18 b469fbd 07c0a81 67f0d18 ce74d46 67f0d18 9217f3e 67f0d18 77773f3 67f0d18 ce74d46 67f0d18 dd1aad4 67f0d18 4779173 67f0d18 a71c291 67f0d18 c92be56 67f0d18 6693c55 67f0d18 4fafabd 67f0d18 4779173 67f0d18 b4def70 67f0d18 4779173 67f0d18 4779173 67f0d18 4779173 67f0d18 4779173 67f0d18 4779173 67f0d18 07c0a81 4779173 67f0d18 07c0a81 67f0d18 07c0a81 67f0d18 07c0a81 67f0d18 4779173 67f0d18 07c0a81 67f0d18 07c0a81 1c7d5c8 67f0d18 07c0a81 67f0d18 4779173 67f0d18 4779173 67f0d18 4779173 67f0d18 4779173 67f0d18 b469fbd 67f0d18 4779173 67f0d18 b469fbd 22baa1c 67f0d18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import json
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_ollama import OllamaEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_ollama import OllamaLLM
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames
from langchain_ibm import WatsonxLLM, WatsonxEmbeddings
from langchain_huggingface import HuggingFaceEndpoint, HuggingFaceEmbeddings
from ibm_watsonx_ai import APIClient, Credentials
from utils import AI_MODELS, TRANSLATIONS
import chromadb
import requests
import os
from dotenv import load_dotenv
import re
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
OLLAMA_LLM = "granite3.1-dense"
OLLAMA_EMBEDDINGS = "granite-embedding:278m"
load_dotenv()
ENVIRONMENT = os.getenv("ENVIRONMENT")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
api_key_watsonx = os.getenv('WATSONX_APIKEY')
projectid_watsonx = os.getenv('WATSONX_PROJECT_ID')
endpoint_watsonx = "https://us-south.ml.cloud.ibm.com"
def set_up_watsonx():
token_watsonx = authenticate_watsonx(api_key_watsonx)
if token_watsonx == None:
return None
parameters = {
"max_new_tokens": 1500,
"min_new_tokens": 1,
"temperature": 0.7,
"top_k": 50,
"top_p": 1,
}
embed_params = {
EmbedTextParamsMetaNames.TRUNCATE_INPUT_TOKENS: 1,
EmbedTextParamsMetaNames.RETURN_OPTIONS: {"input_text": True},
}
credentials = Credentials(
url = endpoint_watsonx,
api_key = api_key_watsonx,
)
client = APIClient(credentials, project_id=projectid_watsonx)
client.set_token(token_watsonx)
watsonx_llm = WatsonxLLM(
model_id="ibm/granite-3-2-8b-instruct",
watsonx_client=client,
params = parameters
)
watsonx_embedding = WatsonxEmbeddings(
model_id="ibm/granite-embedding-278m-multilingual",
url=endpoint_watsonx,
project_id=projectid_watsonx,
params=embed_params,
)
return watsonx_llm, watsonx_embedding
def authenticate_watsonx(api_key):
url = "https://iam.cloud.ibm.com/identity/token"
headers = {
"Content-Type": "application/x-www-form-urlencoded"
}
data = {
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": api_key
}
response = requests.post(url, headers=headers, data=data)
if response.status_code == 200:
token = response.json().get('access_token')
os.environ["WATSONX_TOKEN"] = token
return token
else:
print("Authentication failed. Status code:", response.status_code)
print("Response:", response.text)
return None
class PDFProcessor:
def __init__(self):
self.language = list(TRANSLATIONS.keys())[0]
def set_language(self, language):
self.language = language
def set_llm(self, ai_model, type_model, api_key, project_id_watsonx):
if ai_model == "Open AI / GPT-4o-mini":
current_llm = ChatOpenAI(
model="gpt-4o",
temperature=0.5,
max_tokens=None,
timeout=None,
max_retries=2,
api_key=api_key,
)
embeding_model = OpenAIEmbeddings(
model="text-embedding-3-small",
api_key=api_key,
)
elif ai_model == "IBM Granite3.1 dense / Ollama local":
if type_model == "Local":
try:
# Verificar que Ollama est谩 funcionando y el modelo est谩 disponible
current_llm = OllamaLLM(model=OLLAMA_LLM)
# Intenta hacer un embedding de prueba
test_embedding = OllamaEmbeddings(model=OLLAMA_EMBEDDINGS)
test_embedding.embed_query("test")
embeding_model = test_embedding
except Exception as e:
print(f"Error with Ollama: {e}")
# Fallback a otro modelo o manejo de error
raise Exception("Please ensure Ollama is running and the models are pulled: \n" +
f"ollama pull {OLLAMA_LLM}\n" +
f"ollama pull {OLLAMA_EMBEDDINGS}")
else:
current_llm, embeding_model = set_up_watsonx()
else:
if ENVIRONMENT != "dev":
print("HUGGINGFACE accessing")
current_llm = HuggingFaceEndpoint(
repo_id= AI_MODELS[ai_model],
temperature=0.2,
huggingfacehub_api_token=HUGGINGFACE_TOKEN,
)
else:
current_llm = HuggingFaceEndpoint(
repo_id= AI_MODELS[ai_model],
temperature=0.2,
)
embeding_model = HuggingFaceEmbeddings(
model_name="ibm-granite/granite-embedding-278m-multilingual",
)
return current_llm, embeding_model
def process_pdf(self, vectorstore, pdf_file, chunk_size, chunk_overlap, ai_model, type_model, api_key, project_id_watsonx):
defined_chunk_size = 1000
defined_chunk_overlap = 150
if (ai_model == "Open AI / GPT-4o-mini" and (api_key == "")) : #or (ai_model == "IBM Granite3.1 dense / Ollama local" and type_model == "Api Key" and (api_key == "" or project_id_watsonx == "")
return TRANSLATIONS[self.language]["api_key_required"]
if pdf_file is not None:
loader = PyPDFLoader(file_path=pdf_file.name)
documents = loader.load()
#delete empty page_content documents from documents
documents = [doc for doc in documents if doc.page_content]
if(ai_model == "Open AI / GPT-4o-mini" or ai_model == "IBM Granite3.1 dense / Ollama local"):
if type_model == "Api Key":
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=defined_chunk_size,
chunk_overlap=defined_chunk_overlap,
separators=["\n\n", "\n"]
)
else:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=defined_chunk_size,
chunk_overlap=defined_chunk_overlap,
)
else:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=defined_chunk_size,
chunk_overlap=defined_chunk_overlap
)
#print(text_splitter)
texts = text_splitter.split_documents(documents)
_, embeddings = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
print("vectorstore: ", vectorstore)
#delete all documents from the vectorstore
if vectorstore:
vectorstore.delete_collection()
chromadb.api.client.SharedSystemClient.clear_system_cache()
new_client = chromadb.EphemeralClient()
vectorstore = Chroma.from_documents(
documents=texts,
embedding=embeddings,
client=new_client,
collection_name="pdf_collection"
#persist_directory="./chroma_db"
)
print("vectorstore: ", vectorstore)
return TRANSLATIONS[self.language]["pdf_processed"], vectorstore #+ f" ---- Chunks: {len(vectorstore.get()["documents"])}"
else:
return TRANSLATIONS[self.language]["load_pdf_first"], None
def get_qa_response(self, vectorstore, message, history, ai_model, type_model, api_key, project_id_watsonx, k=4):
current_llm, _ = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
if not vectorstore:
return TRANSLATIONS[self.language]["load_pdf_first"]
retriever = vectorstore.as_retriever(search_kwargs={"k": k})
qa_chain = RetrievalQA.from_chain_type(
llm=current_llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
)
result = qa_chain.invoke({"query": f"{message}.\n You must answer it in {self.language}. Remember not to mention anything that is not in the text. Do not extend information that is not provided in the text. "})
unique_page_labels = {doc.metadata['page_label'] for doc in result["source_documents"]}
page_labels_text = " & ".join([f"Page: {page}" for page in sorted(unique_page_labels)])
return result["result"] + "\n\nSources: " + page_labels_text
def summarizer_by_k_means(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, k, summary_prompt, just_get_documments=False):
print("Summarizer by k means in language: ", self.language)
if not vectorstore:
return TRANSLATIONS[self.language]["load_pdf_first"]
current_llm, _ = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
# Get all the documents from the vectorstore
documents = vectorstore.get(include=["embeddings", "documents"])
documentsByIds = documents["ids"]
documentsByEmbeddings = documents["embeddings"]
documentsByDocuments = documents["documents"]
print("documents length: ", len(documentsByEmbeddings))
#depending on the length of the documents, create a number of clusters, if is les than 12, create 3 clusters, if is les than 36, create 6 clusters, if is less than 108, create 12 clusters, else create 24 clusters
number_for_CreateClusters = 2
if len(documentsByEmbeddings) <= 16:
number_for_CreateClusters = 2
elif len(documentsByEmbeddings) <= 64:
number_for_CreateClusters = 4
elif len(documentsByEmbeddings) <= 128:
number_for_CreateClusters = 8
else:
number_for_CreateClusters = 12
num_clusters = max(1, len(documentsByEmbeddings) // number_for_CreateClusters)
print("num_clusters: ", num_clusters)
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(documentsByEmbeddings)
summary_documents = []
map_ids_documents = {}
#for each cluster, choose the document embedding with the highest similarity to the centroid, based on numpy cosine similarity, and keep a map of ids of the documents
for i in range(num_clusters):
# Get the indices of the documents in the cluster
cluster_indices = [j for j, label in enumerate(kmeans.labels_) if label == i]
if not cluster_indices: # If there are no documents in this cluster, continue
continue
# Get the embeddings of the documents in this cluster
cluster_embeddings = [documentsByEmbeddings[j] for j in cluster_indices]
# Calculate the similarity with the centroid
centroid = kmeans.cluster_centers_[i]
similarities = [cosine_similarity([embedding], [centroid])[0][0] for embedding in cluster_embeddings]
# Find the most similar document to the centroid
most_similar_index = cluster_indices[similarities.index(max(similarities))]
# Add the most similar document to the summary list
summary_documents.append(documentsByDocuments[most_similar_index])
map_ids_documents[most_similar_index] = documentsByIds[most_similar_index]
print("map_ids_documents: ", map_ids_documents)
# Join the summary documents into a single string
summary_text = "\n".join(summary_documents)
print("summary_documents: ", summary_text)
if just_get_documments:
return summary_text
summary_chain = summary_prompt | current_llm
final_summary = summary_chain.invoke({"texts": summary_text, "language": self.language})
return final_summary
def get_summary(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, just_get_documments=False, k=10):
final_summary_prompt = PromptTemplate(
input_variables=["texts", "language"],
template="""
Combine the following texts into a cohesive and structured summary:
------------
{texts}
------------
Preserve the original meaning without adding external information or interpretations.
Ensure clarity, logical flow, and coherence between the combined points.
The summary must be in {language}.
The output must be in markdown format.
Summary:
"""
)
return self.summarizer_by_k_means(vectorstore, ai_model, type_model, api_key, project_id_watsonx, k, final_summary_prompt, just_get_documments)
def get_specialist_opinion(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, specialist_prompt):
questions_prompt = PromptTemplate(
input_variables=["text", "specialist_prompt", "language"],
template="""
* Act as a specialist based on the following instructions and behaviour that you will follow:
------------
{specialist_prompt}
------------
* Based on your role as specialist, create some different sintetized and concise aspects to ask to the knowledge base of the document about the following text:
------------
{text}
------------
* The key aspects and questions must be provided in JSON format with the following structure:
{{
"aspects": [
"Aspect 1",
"Aspect 2",
"Aspect 3",
"Aspect 4",
"Aspect 5",
"Aspect 6",
"Aspect 7",
"Aspect 8",
"Aspect 9",
"Aspect 10",
]
}}
------------
*Example of valid output:
{{
"aspects": [
"Finished date of the project",
"Payment of the project",
"Project extension"
]
}}
------------
* The aspects must be redacted in the language of {language}.
* The given structure must be followed strictly in front of the keys, just use the list of aspects, do not add any other key.
* Generate until 10 different aspects.
------------
Answer:
"""
)
if not vectorstore:
return TRANSLATIONS[self.language]["load_pdf_first"]
print(ai_model)
print(type_model)
current_llm, _ = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
summary_text = self.get_summary(vectorstore, ai_model, type_model, api_key, project_id_watsonx, True, 10)
questions_chain = questions_prompt | current_llm
questions = questions_chain.invoke({"text": summary_text, "specialist_prompt": specialist_prompt, "language": self.language})
print(questions)
# Usar una expresi贸n regular para extraer el JSON
match = re.search(r'\{.*\}', questions, re.DOTALL)
if match:
questions = match.group(0)
else:
raise ValueError("No valid JSON found in the response")
questions = questions.strip()
questions = json.loads(questions)
print(questions)
if len(questions["aspects"]) > 15:
questions["aspects"] = questions["aspects"][:15]
else:
questions["aspects"] = questions["aspects"]
aspects_text = "\n".join([f"* {aspect}: {self.get_qa_response(vectorstore, aspect, [], ai_model, type_model, api_key, project_id_watsonx, 2)}" for aspect in questions["aspects"]])
return aspects_text
""" Act煤a como un abogado altamente experimentado en derecho civil y contractual.
Examina si existen cl谩usulas abusivas, desproporcionadas o contrarias a la normativa vigente, y expl铆calas con claridad.
Basa tu an谩lisis en principios relevantes del derecho civil y contractual.
Ofrece un argumento estructurado y recomendaciones pr谩cticas.
Si hay m煤ltiples interpretaciones posibles, pres茅ntalas de manera objetiva.
Mant茅n un tono profesional, preciso y fundamentado.
Basado en lo que analices, proporciona una evaluaci贸n legal detallada """
""" Eres profesional en gerencia de proyectos y tienes una amplia experiencia en la creaci贸n, direcci贸n y ejecuci贸n de proyectos de tecnologia.
- Basa tu analisis en los objetivos el proyecto, el nicho en que se enfocan y su propuesta de valor.
- Ofrece un argumento estructurado y recomendaciones pr谩cticas en base a otros posibles nichos y soluciones relacionadas.
- Mant茅n un tono profesional, preciso y fundamentado.
Basado en el documento y tu experiencia, proporciona una evaluaci贸n detallada de los proyectos y actividades que se analizaron.
"""
""" Act煤a como un psicologo experto en recursos humanos, con amplia experiencia en el mejoramiento de hoas de vida de aspirantes a empleados.
Basado en el siguiente texto que detalla una vacante de trabajo, proporciona una evaluaci贸n detallada de c贸mo esa persona puede mejorar su perfil para ser contratada.
Descripci贸n de la vacante:
"""
""" Act煤a como un asesor e ingeniero financiero experto en lectura de reportes y an谩lisis de datos.
Basado en los datos y conclusiones del reporte, proporciona una evaluaci贸n financiera detallada y posibles escenarios tanto negativos como positivos que se puedan presentar.
Establece el riesgo que se corre en cada escenario, la probabilidad de ocurrencia de cada uno y la magnitud del impacto en el recurso.
Si hay m煤ltiples interpretaciones posibles, pres茅ntalas de manera objetiva.
Realiza una hip贸tesis que pronostique el futuro de la situaci贸n o recurso analizado, teniendo en cuenta los datos y conclusiones del reporte.
Presenta tus hipotesis en 3 aspectos, corto, mediano y largo plazo.
Mant茅n un tono profesional, preciso y fundamentado.
Basado en lo que analices, proporciona una evaluaci贸n en detalle sobre los activos, reportes y/o recursos que se analizaron""" |