import math import torch import torch.nn.functional as F try: import flash_attn from flash_attn.flash_attn_interface import ( _flash_attn_forward, flash_attn_func, flash_attn_varlen_func, ) except ImportError: flash_attn = None flash_attn_varlen_func = None _flash_attn_forward = None flash_attn_func = None MEMORY_LAYOUT = { # flash模式: # 预处理: 输入 [batch_size, seq_len, num_heads, head_dim] # 后处理: 保持形状不变 "flash": ( lambda x: x, # 保持形状 lambda x: x, # 保持形状 ), # torch/vanilla模式: # 预处理: 交换序列和注意力头的维度 [B,S,A,D] -> [B,A,S,D] # 后处理: 交换回原始维度 [B,A,S,D] -> [B,S,A,D] "torch": ( lambda x: x.transpose(1, 2), # (B,S,A,D) -> (B,A,S,D) lambda x: x.transpose(1, 2), # (B,A,S,D) -> (B,S,A,D) ), "vanilla": ( lambda x: x.transpose(1, 2), lambda x: x.transpose(1, 2), ), } def attention( q, k, v, mode="torch", drop_rate=0, attn_mask=None, causal=False, ): """ 执行QKV自注意力计算 Args: q (torch.Tensor): 查询张量,形状 [batch_size, seq_len, num_heads, head_dim] k (torch.Tensor): 键张量,形状 [batch_size, seq_len_kv, num_heads, head_dim] v (torch.Tensor): 值张量,形状 [batch_size, seq_len_kv, num_heads, head_dim] mode (str): 注意力模式,可选 'flash', 'torch', 'vanilla' drop_rate (float): 注意力矩阵的dropout概率 attn_mask (torch.Tensor): 注意力掩码,形状根据模式不同而变化 causal (bool): 是否使用因果注意力(仅关注前面位置) Returns: torch.Tensor: 注意力输出,形状 [batch_size, seq_len, num_heads * head_dim] """ # 获取预处理和后处理函数 pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode] # 应用预处理变换 q = pre_attn_layout(q) # 形状根据模式变化 k = pre_attn_layout(k) v = pre_attn_layout(v) if mode == "torch": # 使用PyTorch原生的scaled_dot_product_attention if attn_mask is not None and attn_mask.dtype != torch.bool: attn_mask = attn_mask.to(q.dtype) x = F.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal ) elif mode == "flash": assert flash_attn_func is not None, "flash_attn_func未定义" assert attn_mask is None, "不支持的注意力掩码" x: torch.Tensor = flash_attn_func( q, k, v, dropout_p=drop_rate, causal=causal, softmax_scale=None ) # type: ignore elif mode == "vanilla": # 手动实现注意力机制 scale_factor = 1 / math.sqrt(q.size(-1)) # 缩放因子 1/sqrt(d_k) b, a, s, _ = q.shape # 获取形状参数 s1 = k.size(2) # 键值序列长度 # 初始化注意力偏置 attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device) # 处理因果掩码 if causal: assert attn_mask is None, "因果掩码和注意力掩码不能同时使用" # 生成下三角因果掩码 temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril( diagonal=0 ) attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) attn_bias = attn_bias.to(q.dtype) # 处理自定义注意力掩码 if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias += attn_mask # 允许类似ALiBi的位置偏置 # 计算注意力矩阵 attn = (q @ k.transpose(-2, -1)) * scale_factor # [B,A,S,S1] attn += attn_bias # softmax和dropout attn = attn.softmax(dim=-1) attn = torch.dropout(attn, p=drop_rate, train=True) # 计算输出 x = attn @ v # [B,A,S,D] else: raise NotImplementedError(f"不支持的注意力模式: {mode}") # 应用后处理变换 x = post_attn_layout(x) # 恢复原始维度顺序 # 合并注意力头维度 b, s, a, d = x.shape out = x.reshape(b, s, -1) # [B,S,A*D] return out