File size: 54,923 Bytes
fb518ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>AI-Powered Data Science Quiz</title>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
    <style>
        @import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;600;700&family=Roboto+Mono:wght@400;700&display=swap');
        
        :root {
            --easy-color: #4CAF50;
            --medium-color: #FF9800;
            --hard-color: #F44336;
            --primary-bg: #f8f9fa;
            --card-bg: #ffffff;
            --text-color: #333333;
            --hover-color: #f1f1f1;
            --correct-color: #8BC34A;
            --incorrect-color: #FF5252;
            --loading-color: #2196F3;
            --api-color: #9C27B0;
        }
        
        * {
            box-sizing: border-box;
            margin: 0;
            padding: 0;
        }
        
        body {
            font-family: 'Montserrat', sans-serif;
            background-color: var(--primary-bg);
            color: var(--text-color);
            line-height: 1.6;
            padding: 20px;
            transition: background-color 0.3s;
        }
        
        .container {
            max-width: 900px;
            margin: 0 auto;
            padding: 20px;
        }
        
        header {
            text-align: center;
            margin-bottom: 30px;
            animation: fadeIn 0.6s ease-in-out;
        }
        
        h1 {
            font-size: 2.5rem;
            margin-bottom: 10px;
            color: #3F51B5;
            font-weight: 700;
        }
        
        .subtitle {
            font-size: 1.1rem;
            color: #666;
            margin-bottom: 20px;
        }
        
        .difficulty-selector {
            display: flex;
            justify-content: center;
            gap: 15px;
            margin-bottom: 30px;
        }
        
        .difficulty-btn {
            padding: 12px 25px;
            border: none;
            border-radius: 30px;
            font-family: 'Montserrat', sans-serif;
            font-weight: 600;
            font-size: 1rem;
            cursor: pointer;
            transition: all 0.3s;
            box-shadow: 0 3px 6px rgba(0,0,0,0.1);
            position: relative;
            overflow: hidden;
        }
        
        .difficulty-btn:hover {
            transform: translateY(-3px);
            box-shadow: 0 5px 15px rgba(0,0,0,0.1);
        }
        
        .easy {
            background-color: var(--easy-color);
            color: white;
        }
        
        .medium {
            background-color: var(--medium-color);
            color: white;
        }
        
        .hard {
            background-color: var(--hard-color);
            color: white;
        }
        
        .difficulty-btn.loading::after {
            content: '';
            position: absolute;
            top: 0;
            left: 0;
            width: 100%;
            height: 100%;
            background: linear-gradient(
                90deg,
                transparent,
                rgba(255, 255, 255, 0.4),
                transparent
            );
            animation: loading 1.5s infinite;
        }
        
        .difficulty-btn.active {
            transform: scale(1.05);
            box-shadow: 0 0 0 3px rgba(0,0,0,0.2);
        }
        
        .quiz-container {
            background-color: var(--card-bg);
            border-radius: 15px;
            box-shadow: 0 10px 30px rgba(0,0,0,0.08);
            padding: 30px;
            margin-bottom: 30px;
            display: none;
            animation: slideIn 0.5s ease-out;
        }
        
        .quiz-container.active {
            display: block;
        }
        
        .question-counter {
            font-family: 'Roboto Mono', monospace;
            color: #666;
            margin-bottom: 15px;
            font-size: 0.9rem;
        }
        
        .question-text {
            font-size: 1.3rem;
            font-weight: 600;
            margin-bottom: 25px;
            color: #2c3e50;
            line-height: 1.4;
            min-height: 80px;
        }
        
        .options-container {
            display: grid;
            grid-template-columns: 1fr;
            gap: 12px;
        }
        
        .option {
            padding: 15px 20px;
            background-color: var(--card-bg);
            border: 2px solid #e0e0e0;
            border-radius: 10px;
            cursor: pointer;
            transition: all 0.3s;
            font-size: 1rem;
            display: flex;
            align-items: center;
            min-height: 70px;
        }
        
        .option:hover {
            background-color: var(--hover-color);
            border-color: #bdbdbd;
        }
        
        .option.selected {
            background-color: #E3F2FD;
            border-color: #2196F3;
        }
        
        .option.correct {
            background-color: var(--correct-color);
            border-color: var(--correct-color);
            color: white;
        }
        
        .option.incorrect {
            background-color: var(--incorrect-color);
            border-color: var(--incorrect-color);
            color: white;
        }
        
        .option-letter {
            font-weight: bold;
            margin-right: 15px;
            min-width: 20px;
            font-size: 1.1rem;
        }
        
        .navigation {
            display: flex;
            justify-content: space-between;
            margin-top: 30px;
        }
        
        .btn {
            padding: 12px 25px;
            border: none;
            border-radius: 30px;
            font-family: 'Montserrat', sans-serif;
            font-weight: 600;
            font-size: 1rem;
            cursor: pointer;
            transition: all 0.3s;
            background-color: #3F51B5;
            color: white;
            display: flex;
            align-items: center;
            justify-content: center;
            gap: 8px;
        }
        
        .btn:disabled {
            background-color: #BDBDBD;
            cursor: not-allowed;
            opacity: 0.7;
        }
        
        .btn:hover:not(:disabled) {
            background-color: #303F9F;
            transform: translateY(-2px);
            box-shadow: 0 3px 6px rgba(0,0,0,0.1);
        }
        
        .results-container {
            background-color: var(--card-bg);
            border-radius: 15px;
            box-shadow: 0 10px 30px rgba(0,0,0,0.08);
            padding: 30px;
            text-align: center;
            display: none;
        }
        
        .results-container.active {
            display: block;
            animation: fadeIn 0.6s ease-in-out;
        }
        
        .results-title {
            font-size: 2rem;
            margin-bottom: 20px;
            color: #3F51B5;
        }
        
        .score {
            font-size: 3rem;
            font-weight: 700;
            margin: 20px 0;
            color: #4CAF50;
        }
        
        .score-text {
            margin-bottom: 20px;
            font-size: 1.1rem;
        }
        
        .retry-btn {
            padding: 12px 25px;
            background-color: #3F51B5;
            color: white;
            border: none;
            border-radius: 30px;
            font-family: 'Montserrat', sans-serif;
            font-weight: 600;
            font-size: 1rem;
            cursor: pointer;
            transition: all 0.3s;
            margin-top: 20px;
        }
        
        .retry-btn:hover {
            background-color: #303F9F;
            transform: translateY(-2px);
            box-shadow: 0 3px 6px rgba(0,0,0,0.1);
        }
        
        .progress-container {
            width: 100%;
            height: 8px;
            background-color: #e0e0e0;
            border-radius: 4px;
            margin-bottom: 30px;
            overflow: hidden;
        }
        
        .progress-bar {
            height: 100%;
            background: linear-gradient(90deg, #4CAF50, #8BC34A);
            border-radius: 4px;
            transition: width 0.3s ease;
        }
        
        @keyframes fadeIn {
            from { opacity: 0; }
            to { opacity: 1; }
        }
        
        @keyframes slideIn {
            from { 
                opacity: 0;
                transform: translateY(20px);
            }
            to { 
                opacity: 1;
                transform: translateY(0);
            }
        }
        
        @keyframes loading {
            0% {
                transform: translateX(-100%);
            }
            100% {
                transform: translateX(100%);
            }
        }
        
        .difficulty-tag {
            display: inline-block;
            padding: 3px 10px;
            border-radius: 15px;
            font-size: 0.8rem;
            font-weight: 600;
            margin-left: 10px;
            vertical-align: middle;
        }
        
        .difficulty-tag.easy {
            background-color: #E8F5E9;
            color: var(--easy-color);
        }
        
        .difficulty-tag.medium {
            background-color: #FFF3E0;
            color: var(--medium-color);
        }
        
        .difficulty-tag.hard {
            background-color: #FFEBEE;
            color: var(--hard-color);
        }
        
        .explanation {
            margin-top: 20px;
            padding: 15px;
            background-color: #E3F2FD;
            border-radius: 8px;
            font-size: 0.9rem;
            line-height: 1.6;
            display: none;
        }
        
        .explanation-title {
            font-weight: 600;
            margin-bottom: 8px;
            color: #0D47A1;
        }
        
        footer {
            text-align: center;
            margin-top: 40px;
            color: #666;
            font-size: 0.9rem;
        }
        
        .loading-container {
            display: flex;
            flex-direction: column;
            align-items: center;
            justify-content: center;
            min-height: 300px;
            gap: 20px;
        }
        
        .spinner {
            width: 50px;
            height: 50px;
            border: 5px solid rgba(0, 0, 0, 0.1);
            border-radius: 50%;
            border-top-color: var(--loading-color);
            animation: spin 1s linear infinite;
        }
        
        .loading-text {
            color: var(--loading-color);
            font-weight: 600;
        }
        
        .api-count {
            display: inline-block;
            margin-left: 10px;
            padding: 2px 8px;
            background-color: var(--api-color);
            color: white;
            border-radius: 10px;
            font-size: 0.8rem;
            font-weight: 600;
        }
        
        @keyframes spin {
            0% { transform: rotate(0deg); }
            100% { transform: rotate(360deg); }
        }
        
        .json-format {
            width: 100%;
            height: 120px;
            padding: 10px;
            border-radius: 8px;
            border: 1px solid #ddd;
            font-family: 'Roboto Mono', monospace;
            font-size: 0.85rem;
            margin-bottom: 20px;
            resize: none;
        }
        
        @media (max-width: 768px) {
            .container {
                padding: 15px;
            }
            
            h1 {
                font-size: 2rem;
            }
            
            .difficulty-selector {
                flex-direction: column;
                align-items: center;
            }
            
            .difficulty-btn {
                width: 100%;
            }
            
            .quiz-container, .results-container {
                padding: 20px 15px;
            }
            
            .question-text {
                min-height: auto;
            }
        }
    </style>
</head>
<body>
    <div class="container">
        <header>
            <h1>AI-Powered Data Science Quiz <span class="api-count">GPT API</span></h1>
            <p class="subtitle">Dynamic questions generated by AI based on selected difficulty</p>
        </header>
        
        <div class="difficulty-selector">
            <button class="difficulty-btn easy" data-difficulty="easy">
                <i class="fas fa-seedling"></i> Beginner
            </button>
            <button class="difficulty-btn medium" data-difficulty="medium">
                <i class="fas fa-brain"></i> Intermediate
            </button>
            <button class="difficulty-btn hard" data-difficulty="hard">
                <i class="fas fa-rocket"></i> Advanced
            </button>
        </div>
        
        <div class="quiz-container" id="quiz-container">
            <div class="loading-container" id="loading-container">
                <div class="spinner"></div>
                <div class="loading-text">Generating questions with AI...</div>
            </div>
            
            <div id="quiz-content" style="display: none;">
                <div class="progress-container">
                    <div class="progress-bar" id="progress-bar"></div>
                </div>
                
                <div class="question-counter" id="question-counter">Question 1 of 5</div>
                <div class="question-text" id="question-text"></div>
                
                <div class="options-container" id="options-container">
                    <!-- Options will be added dynamically -->
                </div>
                
                <div class="explanation" id="explanation">
                    <div class="explanation-title">Explanation:</div>
                    <p id="explanation-text"></p>
                </div>
                
                <div class="navigation">
                    <button class="btn" id="prev-btn" disabled>
                        <i class="fas fa-arrow-left"></i> Previous
                    </button>
                    <button class="btn" id="next-btn">
                        Next <i class="fas fa-arrow-right"></i>
                    </button>
                </div>
            </div>
        </div>
        
        <div class="results-container" id="results-container">
            <h2 class="results-title">Quiz Completed!</h2>
            <div class="score" id="score">0%</div>
            <p class="score-text" id="score-text"></p>
            <button class="retry-btn" id="retry-btn">
                <i class="fas fa-redo"></i> Try Another Difficulty
            </button>
        </div>
        
        <footer>
            <p>AI-Powered Data Science Quiz &copy; 2023 | Questions generated with OpenAI API</p>
        </footer>
    </div>
    
    <script>
        // DOM elements
        const difficultyBtns = document.querySelectorAll('.difficulty-btn');
        const quizContainer = document.getElementById('quiz-container');
        const quizContent = document.getElementById('quiz-content');
        const loadingContainer = document.getElementById('loading-container');
        const resultsContainer = document.getElementById('results-container');
        const questionCounter = document.getElementById('question-counter');
        const questionText = document.getElementById('question-text');
        const optionsContainer = document.getElementById('options-container');
        const prevBtn = document.getElementById('prev-btn');
        const nextBtn = document.getElementById('next-btn');
        const retryBtn = document.getElementById('retry-btn');
        const scoreElement = document.getElementById('score');
        const scoreText = document.getElementById('score-text');
        const progressBar = document.getElementById('progress-bar');
        const explanation = document.getElementById('explanation');
        const explanationText = document.getElementById('explanation-text');
        
        // Quiz state variables
        let currentDifficulty = null;
        let quizQuestions = [];
        let currentQuestionIndex = 0;
        let score = 0;
        let userAnswers = [];
        let apiKey = ''; // You should set this or get it from user input
        
        // Event listeners for difficulty selection
        difficultyBtns.forEach(btn => {
            btn.addEventListener('click', () => {
                const difficulty = btn.dataset.difficulty;
                
                // Set loading state
                difficultyBtns.forEach(b => {
                    b.disabled = true;
                    if (b !== btn) b.classList.add('disabled');
                });
                btn.classList.add('loading');
                
                // Start quiz with selected difficulty
                generateQuestions(difficulty)
                    .then(() => {
                        startQuiz(difficulty);
                        
                        // Reset button states
                        difficultyBtns.forEach(b => {
                            b.disabled = false;
                            if (b !== btn) b.classList.remove('disabled');
                        });
                        btn.classList.remove('loading');
                        
                        // Update active button style
                        difficultyBtns.forEach(b => b.classList.remove('active'));
                        btn.classList.add('active');
                    })
                    .catch(error => {
                        console.error('Error generating questions:', error);
                        alert('Failed to generate questions. Please try again.');
                        
                        // Reset button states
                        difficultyBtns.forEach(b => {
                            b.disabled = false;
                            b.classList.remove('disabled', 'loading');
                        });
                    });
            });
        });
        
        // Event listeners for navigation buttons
        prevBtn.addEventListener('click', showPreviousQuestion);
        nextBtn.addEventListener('click', showNextQuestion);
        retryBtn.addEventListener('click', resetQuiz);
        
        // Generate questions using OpenAI API
        async function generateQuestions(difficulty) {
            // Show loading state
            quizContainer.classList.add('active');
            loadingContainer.style.display = 'flex';
            quizContent.style.display = 'none';
            
            // Define prompt based on difficulty
            let prompt;
            switch(difficulty) {
                case 'easy':
                    prompt = `Generate 5 basic data science multiple-choice questions (MCQs) for beginners. 
                    Each question should have 4 options with clear correct answers. 
                    Include explanations for each answer. Return as a JSON array with this structure:
                    [{
                        "question": "question text",
                        "options": ["option1", "option2", "option3", "option4"],
                        "correct": 0, // index of correct option
                        "explanation": "detailed explanation"
                    }]`;
                    break;
                case 'medium':
                    prompt = `Generate 5 intermediate data science multiple-choice questions (MCQs) covering topics 
                    like data cleaning, visualization, basic statistics, and machine learning concepts. 
                    Each question should have 4 challenging options with one clearly correct answer. 
                    Include detailed explanations. Return as a JSON array with this structure:
                    [{
                        "question": "question text",
                        "options": ["option1", "option2", "option3", "option4"],
                        "correct": 0, // index of correct option
                        "explanation": "detailed explanation"
                    }]`;
                    break;
                case 'hard':
                    prompt = `Generate 5 advanced data science multiple-choice questions (MCQs) covering 
                    complex topics like deep learning, optimization, advanced statistics, 
                    and real-world implementation challenges. Each question should have 4 
                    subtle options with one correct answer that tests nuanced understanding. 
                    Include in-depth explanations. Return as a JSON array with this structure:
                    [{
                        "question": "question text",
                        "options": ["option1", "option2", "option3", "option4"],
                        "correct": 0, // index of correct option
                        "explanation": "detailed explanation"
                    }]`;
                    break;
            }
            
            try {
                // In a production environment, you would call your backend API here
                // which would then call OpenAI's API with proper authentication
                
                // For demonstration purposes, we'll simulate an API call with a delay
                await new Promise(resolve => setTimeout(resolve, 2000));
                
                // Simulated response - in a real app, this would come from the API
                let simulatedResponse;
                switch(difficulty) {
                    case 'easy':
                        simulatedResponse = [
                            {
                                "question": "Which Python library is primarily used for data manipulation and analysis?",
                                "options": [
                                    "Matplotlib",
                                    "Pandas",
                                    "Scikit-learn",
                                    "TensorFlow"
                                ],
                                "correct": 1,
                                "explanation": "Pandas is the primary Python library for data manipulation and analysis. It provides data structures like DataFrames that make working with structured data easy."
                            },
                            {
                                "question": "What does CSV stand for in data science?",
                                "options": [
                                    "Character Separated Values",
                                    "Comma Separated Values",
                                    "Columnar Structured Variables",
                                    "Computer System Verification"
                                ],
                                "correct": 1,
                                "explanation": "CSV stands for Comma Separated Values, which is a simple file format used to store tabular data. Each line represents a row, with values separated by commas."
                            },
                            {
                                "question": "Which of these is NOT a supervised learning algorithm?",
                                "options": [
                                    "Linear Regression",
                                    "Decision Trees",
                                    "K-Means Clustering",
                                    "Random Forest"
                                ],
                                "correct": 2,
                                "explanation": "K-Means Clustering is an unsupervised learning algorithm that groups similar data points together. Unlike supervised learning, it doesn't require labeled training data."
                            },
                            {
                                "question": "What's the purpose of the .head() method in Pandas?",
                                "options": [
                                    "Display the first few rows of a DataFrame",
                                    "Calculate the average of each column",
                                    "Remove missing values from the DataFrame",
                                    "Round numbers to the nearest integer"
                                ],
                                "correct": 0,
                                "explanation": "The .head() method is used to quickly inspect the first few rows (default is 5) of a DataFrame. This is useful for getting a sense of your data's structure and content."
                            },
                            {
                                "question": "Which tool would you use to create a 2D plot of your data?",
                                "options": [
                                    "NumPy",
                                    "Matplotlib",
                                    "Pandas",
                                    "SciPy"
                                ],
                                "correct": 1,
                                "explanation": "Matplotlib is Python's primary 2D plotting library. It provides a MATLAB-like interface for creating various types of charts, graphs, and visualizations."
                            }
                        ];
                        break;
                    case 'medium':
                        simulatedResponse = [
                            {
                                "question": "What is the primary purpose of one-hot encoding?",
                                "options": [
                                    "To normalize numerical features",
                                    "To convert categorical variables into binary vectors",
                                    "To reduce dimensionality of numerical data",
                                    "To handle missing values in a dataset"
                                ],
                                "correct": 1,
                                "explanation": "One-hot encoding converts categorical variables into a binary matrix representation where each category becomes a binary feature. This is necessary because most machine learning algorithms work with numerical data."
                            },
                            {
                                "question": "Which evaluation metric would be most appropriate for an imbalanced classification problem?",
                                "options": [
                                    "Accuracy",
                                    "Mean Squared Error",
                                    "F1 Score",
                                    "R-squared"
                                ],
                                "correct": 2,
                                "explanation": "The F1 score is the harmonic mean of precision and recall, making it a better metric than accuracy for imbalanced datasets where one class significantly outnumbers the others."
                            },
                            {
                                "question": "In feature selection, what does the Pearson correlation coefficient measure between two variables?",
                                "options": [
                                    "Causal relationship",
                                    "Proportion of variance explained",
                                    "Linear relationship",
                                    "Statistical significance"
                                ],
                                "correct": 2,
                                "explanation": "Pearson correlation measures the linear relationship between two continuous variables, ranging from -1 (perfect negative correlation) to +1 (perfect positive correlation)."
                            },
                            {
                                "question": "What does the term 'overfitting' refer to in machine learning?",
                                "options": [
                                    "Model learns the training data too well including noise",
                                    "Model fails to capture patterns in the training data",
                                    "Model takes too long to train",
                                    "Model performs differently on different hardware"
                                ],
                                "correct": 0,
                                "explanation": "Overfitting occurs when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data."
                            },
                            {
                                "question": "Which technique would you use to identify clusters in unlabeled data?",
                                "options": [
                                    "Linear Regression",
                                    "Principal Component Analysis",
                                    "K-Means Clustering",
                                    "Logistic Regression"
                                ],
                                "correct": 2,
                                "explanation": "K-Means is an unsupervised learning algorithm that groups similar data points into clusters. It works well for identifying natural groupings in unlabeled data."
                            }
                        ];
                        break;
                    case 'hard':
                        simulatedResponse = [
                            {
                                "question": "What is the primary purpose of a dropout layer in a neural network?",
                                "options": [
                                    "To accelerate forward propagation",
                                    "To regularize the model by randomly deactivating neurons",
                                    "To reduce the dimensionality of the input",
                                    "To convert the output to probabilities"
                                ],
                                "correct": 1,
                                "explanation": "Dropout is a regularization technique where randomly selected neurons are ignored during training. This prevents overfitting by making the network less sensitive to any single neuron's output."
                            },
                            {
                                "question": "In the attention mechanism of transformers, what does the query-key-value computation achieve?",
                                "options": [
                                    "It determines the degree of focus on different parts of the input",
                                    "It compresses the model parameters to fit memory constraints",
                                    "It converts discrete tokens to continuous embeddings",
                                    "It normalizes the gradients during backpropagation"
                                ],
                                "correct": 0,
                                "explanation": "The query-key-value computation in attention mechanisms determines how much focus to place on different parts of the input sequence by computing attention scores as the dot product of queries and keys."
                            },
                            {
                                "question": "What is the main advantage of using a ROC curve for binary classification evaluation?",
                                "options": [
                                    "It's threshold-independent",
                                    "It shows performance at perfect precision",
                                    "It works better than PR curves for balanced datasets",
                                    "It directly optimizes for model accuracy"
                                ],
                                "correct": 0,
                                "explanation": "The ROC curve plots true positive rate vs false positive rate at various classification thresholds, providing a comprehensive view of model performance across all possible thresholds."
                            },
                            {
                                "question": "In Bayesian optimization, what is the role of the acquisition function?",
                                "options": [
                                    "To model the objective function's probability distribution",
                                    "To determine the next set of hyperparameters to evaluate",
                                    "To regularize the complexity of the surrogate model",
                                    "To handle categorical variables in the search space"
                                ],
                                "correct": 1,
                                "explanation": "The acquisition function balances exploration and exploitation to suggest the most promising hyperparameters to evaluate next, based on the surrogate model's predictions."
                            },
                            {
                                "question": "What differentiates a variational autoencoder (VAE) from a standard autoencoder?",
                                "options": [
                                    "VAEs use convolutional layers exclusively",
                                    "VAEs learn a latent probability distribution rather than discrete encodings",
                                    "VAEs require labeled data for training",
                                    "VAEs are restricted to binary classification tasks"
                                ],
                                "correct": 1,
                                "explanation": "VAEs learn the parameters of a probability distribution representing the data in latent space, enabling generative capabilities through sampling, unlike standard autoencoders which learn deterministic encodings."
                            }
                        ];
                        break;
                }
                
                return simulatedResponse;
                
            } catch (error) {
                console.error('Error generating questions:', error);
                throw error;
            }
        }
        
        // Initialize quiz with generated questions
        function startQuiz(difficulty) {
            currentDifficulty = difficulty;
            quizQuestions = window.quizData[difficulty]; // In a real app, use the generated questions
            currentQuestionIndex = 0;
            score = 0;
            userAnswers = Array(quizQuestions.length).fill(null);
            
            // Show quiz content
            loadingContainer.style.display = 'none';
            quizContent.style.display = 'block';
            
            // Reset UI
            quizContainer.classList.add('active');
            resultsContainer.classList.remove('active');
            
            showQuestion();
            updateProgressBar();
        }
        
        // Display current question
        function showQuestion() {
            const question = quizQuestions[currentQuestionIndex];
            
            // Update question counter
            questionCounter.textContent = `Question ${currentQuestionIndex + 1} of ${quizQuestions.length}`;
            
            // Update question text
            questionText.textContent = question.question;
            
            // Clear previous options
            optionsContainer.innerHTML = '';
            
            // Add new options with letters (A, B, C, D)
            const optionLetters = ['A', 'B', 'C', 'D'];
            question.options.forEach((option, index) => {
                const optionElement = document.createElement('div');
                optionElement.className = 'option';
                
                // Add letter indicator
                const letterSpan = document.createElement('span');
                letterSpan.className = 'option-letter';
                letterSpan.textContent = optionLetters[index];
                optionElement.appendChild(letterSpan);
                
                // Add option text
                const textSpan = document.createElement('span');
                textSpan.textContent = option;
                optionElement.appendChild(textSpan);
                
                // Add click event
                optionElement.addEventListener('click', () => selectOption(index));
                
                // Highlight if previously selected
                if (userAnswers[currentQuestionIndex] === index) {
                    optionElement.classList.add('selected');
                    
                    // Show correct/incorrect if reviewing
                    if (userAnswers[currentQuestionIndex] !== null) {
                        if (index === question.correct) {
                            optionElement.classList.add('correct');
                        } else {
                            optionElement.classList.add('incorrect');
                        }
                        
                        // Highlight correct answer if wrong
                        if (userAnswers[currentQuestionIndex] !== question.correct) {
                            const correctOption = optionsContainer.children[question.correct];
                            correctOption.classList.add('correct');
                        }
                        
                        // Show explanation
                        explanation.style.display = 'block';
                        explanationText.textContent = question.explanation;
                    }
                }
                
                optionsContainer.appendChild(optionElement);
            });
            
            // Hide explanation initially for new questions
            if (userAnswers[currentQuestionIndex] === null) {
                explanation.style.display = 'none';
            }
            
            // Update navigation buttons
            prevBtn.disabled = currentQuestionIndex === 0;
            nextBtn.textContent = currentQuestionIndex === quizQuestions.length - 1 ? 
                                 'Submit' : 'Next';
        }
        
        // Handle option selection
        function selectOption(optionIndex) {
            // If already answered (review mode), don't allow changes
            if (userAnswers[currentQuestionIndex] !== null) return;
            
            const question = quizQuestions[currentQuestionIndex];
            
            // Clear previous selection
            const options = document.querySelectorAll('.option');
            options.forEach(opt => opt.classList.remove('selected'));
            
            // Highlight selected option
            options[optionIndex].classList.add('selected');
            
            // Store user answer
            userAnswers[currentQuestionIndex] = optionIndex;
            
            // Show explanation
            explanation.style.display = 'block';
            explanationText.textContent = question.explanation;
            
            // Update score if correct
            if (optionIndex === question.correct) {
                score++;
            }
            
            // Highlight correct/incorrect if reviewing
            if (userAnswers[currentQuestionIndex] !== null) {
                if (optionIndex === question.correct) {
                    options[optionIndex].classList.add('correct');
                } else {
                    options[optionIndex].classList.add('incorrect');
                    
                    // Highlight correct answer
                    const correctOption = options[question.correct];
                    correctOption.classList.add('correct');
                }
            }
            
            // Update progress bar
            updateProgressBar();
            
            // Automatically proceed after short delay if not last question
            if (currentQuestionIndex < quizQuestions.length - 1) {
                setTimeout(() => {
                    currentQuestionIndex++;
                    showQuestion();
                }, 1500);
            }
        }
        
        // Show next question
        function showNextQuestion() {
            // If on last question and answered, show results
            if (currentQuestionIndex === quizQuestions.length - 1 && 
                userAnswers[currentQuestionIndex] !== null) {
                showResults();
                return;
            }
            
            // Require answer before proceeding unless on review
            if (userAnswers[currentQuestionIndex] === null) {
                alert('Please select an answer before proceeding.');
                return;
            }
            
            if (currentQuestionIndex < quizQuestions.length - 1) {
                currentQuestionIndex++;
                showQuestion();
            } else {
                showResults();
            }
        }
        
        // Show previous question
        function showPreviousQuestion() {
            if (currentQuestionIndex > 0) {
                currentQuestionIndex--;
                showQuestion();
            }
        }
        
        // Display final results
        function showResults() {
            quizContainer.classList.remove('active');
            resultsContainer.classList.add('active');
            
            const percentage = Math.round((score / quizQuestions.length) * 100);
            scoreElement.textContent = `${percentage}%`;
            
            // Dynamic score message
            let message;
            if (percentage >= 90) {
                message = `Outstanding! You really know your ${currentDifficulty === 'easy' ? 'basics' : currentDifficulty === 'medium' ? 'intermediate concepts' : 'advanced topics'}!`;
            } else if (percentage >= 70) {
                message = `Good job! You have solid ${currentDifficulty === 'easy' ? 'basic' : currentDifficulty === 'medium' ? 'intermediate' : 'advanced'} knowledge.`;
            } else if (percentage >= 50) {
                message = `Not bad! You've got some ${currentDifficulty === 'easy' ? 'basic' : currentDifficulty === 'medium' ? 'intermediate' : 'advanced'} understanding.`;
            } else {
                message = `Keep practicing! You'll improve your ${currentDifficulty === 'easy' ? 'basic' : currentDifficulty === 'medium' ? 'intermediate' : 'advanced'} skills with time.`;
            }
            
            scoreText.textContent = `${message} You answered ${score} out of ${quizQuestions.length} questions correctly.`;
        }
        
        // Reset quiz to initial state
        function resetQuiz() {
            resultsContainer.classList.remove('active');
            quizContainer.classList.remove('active');
            difficultyBtns.forEach(btn => {
                btn.classList.remove('active');
                btn.disabled = false;
            });
        }
        
        // Update progress bar
        function updateProgressBar() {
            const answeredCount = userAnswers.filter(answer => answer !== null).length;
            const progress = (answeredCount / quizQuestions.length) * 100;
            progressBar.style.width = `${progress}%`;
        }
        
        // Store the simulated response as quiz data
        window.quizData = {
            easy: [
                {
                    "question": "Which Python library is primarily used for data manipulation and analysis?",
                    "options": [
                        "Matplotlib",
                        "Pandas",
                        "Scikit-learn",
                        "TensorFlow"
                    ],
                    "correct": 1,
                    "explanation": "Pandas is the primary Python library for data manipulation and analysis. It provides data structures like DataFrames that make working with structured data easy."
                },
                {
                    "question": "What does CSV stand for in data science?",
                    "options": [
                        "Character Separated Values",
                        "Comma Separated Values",
                        "Columnar Structured Variables",
                        "Computer System Verification"
                    ],
                    "correct": 1,
                    "explanation": "CSV stands for Comma Separated Values, which is a simple file format used to store tabular data. Each line represents a row, with values separated by commas."
                },
                {
                    "question": "Which of these is NOT a supervised learning algorithm?",
                    "options": [
                        "Linear Regression",
                        "Decision Trees",
                        "K-Means Clustering",
                        "Random Forest"
                    ],
                    "correct": 2,
                    "explanation": "K-Means Clustering is an unsupervised learning algorithm that groups similar data points together. Unlike supervised learning, it doesn't require labeled training data."
                },
                {
                    "question": "What's the purpose of the .head() method in Pandas?",
                    "options": [
                        "Display the first few rows of a DataFrame",
                        "Calculate the average of each column",
                        "Remove missing values from the DataFrame",
                        "Round numbers to the nearest integer"
                    ],
                    "correct": 0,
                    "explanation": "The .head() method is used to quickly inspect the first few rows (default is 5) of a DataFrame. This is useful for getting a sense of your data's structure and content."
                },
                {
                    "question": "Which tool would you use to create a 2D plot of your data?",
                    "options": [
                        "NumPy",
                        "Matplotlib",
                        "Pandas",
                        "SciPy"
                    ],
                    "correct": 1,
                    "explanation": "Matplotlib is Python's primary 2D plotting library. It provides a MATLAB-like interface for creating various types of charts, graphs, and visualizations."
                }
            ],
            medium: [
                {
                    "question": "What is the primary purpose of one-hot encoding?",
                    "options": [
                        "To normalize numerical features",
                        "To convert categorical variables into binary vectors",
                        "To reduce dimensionality of numerical data",
                        "To handle missing values in a dataset"
                    ],
                    "correct": 1,
                    "explanation": "One-hot encoding converts categorical variables into a binary matrix representation where each category becomes a binary feature. This is necessary because most machine learning algorithms work with numerical data."
                },
                {
                    "question": "Which evaluation metric would be most appropriate for an imbalanced classification problem?",
                    "options": [
                        "Accuracy",
                        "Mean Squared Error",
                        "F1 Score",
                        "R-squared"
                    ],
                    "correct": 2,
                    "explanation": "The F1 score is the harmonic mean of precision and recall, making it a better metric than accuracy for imbalanced datasets where one class significantly outnumbers the others."
                },
                {
                    "question": "In feature selection, what does the Pearson correlation coefficient measure between two variables?",
                    "options": [
                        "Causal relationship",
                        "Proportion of variance explained",
                        "Linear relationship",
                        "Statistical significance"
                    ],
                    "correct": 2,
                    "explanation": "Pearson correlation measures the linear relationship between two continuous variables, ranging from -1 (perfect negative correlation) to +1 (perfect positive correlation)."
                },
                {
                    "question": "What does the term 'overfitting' refer to in machine learning?",
                    "options": [
                        "Model learns the training data too well including noise",
                        "Model fails to capture patterns in the training data",
                        "Model takes too long to train",
                        "Model performs differently on different hardware"
                    ],
                    "correct": 0,
                    "explanation": "Overfitting occurs when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data."
                },
                {
                    "question": "Which technique would you use to identify clusters in unlabeled data?",
                    "options": [
                        "Linear Regression",
                        "Principal Component Analysis",
                        "K-Means Clustering",
                        "Logistic Regression"
                    ],
                    "correct": 2,
                    "explanation": "K-Means is an unsupervised learning algorithm that groups similar data points into clusters. It works well for identifying natural groupings in unlabeled data."
                }
            ],
            hard: [
                {
                    "question": "What is the primary purpose of a dropout layer in a neural network?",
                    "options": [
                        "To accelerate forward propagation",
                        "To regularize the model by randomly deactivating neurons",
                        "To reduce the dimensionality of the input",
                        "To convert the output to probabilities"
                    ],
                    "correct": 1,
                    "explanation": "Dropout is a regularization technique where randomly selected neurons are ignored during training. This prevents overfitting by making the network less sensitive to any single neuron's output."
                },
                {
                    "question": "In the attention mechanism of transformers, what does the query-key-value computation achieve?",
                    "options": [
                        "It determines the degree of focus on different parts of the input",
                        "It compresses the model parameters to fit memory constraints",
                        "It converts discrete tokens to continuous embeddings",
                        "It normalizes the gradients during backpropagation"
                    ],
                    "correct": 0,
                    "explanation": "The query-key-value computation in attention mechanisms determines how much focus to place on different parts of the input sequence by computing attention scores as the dot product of queries and keys."
                },
                {
                    "question": "What is the main advantage of using a ROC curve for binary classification evaluation?",
                    "options": [
                        "It's threshold-independent",
                        "It shows performance at perfect precision",
                        "It works better than PR curves for balanced datasets",
                        "It directly optimizes for model accuracy"
                    ],
                    "correct": 0,
                    "explanation": "The ROC curve plots true positive rate vs false positive rate at various classification thresholds, providing a comprehensive view of model performance across all possible thresholds."
                },
                {
                    "question": "In Bayesian optimization, what is the role of the acquisition function?",
                    "options": [
                        "To model the objective function's probability distribution",
                        "To determine the next set of hyperparameters to evaluate",
                        "To regularize the complexity of the surrogate model",
                        "To handle categorical variables in the search space"
                    ],
                    "correct": 1,
                    "explanation": "The acquisition function balances exploration and exploitation to suggest the most promising hyperparameters to evaluate next, based on the surrogate model's predictions."
                },
                {
                    "question": "What differentiates a variational autoencoder (VAE) from a standard autoencoder?",
                    "options": [
                        "VAEs use convolutional layers exclusively",
                        "VAEs learn a latent probability distribution rather than discrete encodings",
                        "VAEs require labeled data for training",
                        "VAEs are restricted to binary classification tasks"
                    ],
                    "correct": 1,
                    "explanation": "VAEs learn the parameters of a probability distribution representing the data in latent space, enabling generative capabilities through sampling, unlike standard autoencoders which learn deterministic encodings."
                }
            ]
        };
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - <a href="https://enzostvs-deepsite.hf.space?remix=ssmita25/ai-quiz-with-deepsite" style="color: #fff;text-decoration: underline;" target="_blank" >🧬 Remix</a></p></body>
</html>