File size: 4,244 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import json
from comet.utils.utils import DD

device = "cpu"

save = False
test_save = False
toy = False
do_gen = False

save_strategy = "all"


def get_parameters(opt, exp_type="model"):
    params = DD()
    params.net = DD()

    params.mle = 0
    params.dataset = opt.dataset

    params.net = get_net_parameters(opt)
    params.train = get_training_parameters(opt)

    params.model = params.net.model
    params.exp = opt.exp

    params.data = get_data_parameters(opt, params.exp, params.dataset)
    params.eval = get_eval_parameters(opt, params.data.get("categories", None))

    meta = DD()

    params.trainer = opt.trainer

    meta.iterations = int(opt.iterations)
    meta.cycle = opt.cycle
    params.cycle = opt.cycle
    params.iters = int(opt.iterations)

    global toy
    toy = opt.toy

    global do_gen
    do_gen = opt.do_gen

    global save
    save = opt.save

    global test_save
    test_save = opt.test_save

    global save_strategy
    save_strategy = opt.save_strategy

    print(params)
    return params, meta


def get_eval_parameters(opt, force_categories=None):
    evaluate = DD()

    if opt.eval_sampler == "beam":
        evaluate.bs = opt.beam_size
    elif opt.eval_sampler == "greedy":
        evaluate.bs = 1
    elif opt.eval_sampler == "topk":
        evaluate.k = opt.topk_size

    evaluate.smax = opt.gen_seqlength
    evaluate.sample = opt.eval_sampler

    evaluate.numseq = opt.num_sequences

    evaluate.gs = opt.generate_sequences
    evaluate.es = opt.evaluate_sequences

    if opt.dataset == "atomic":
        if "eval_categories" in opt and force_categories is None:
            evaluate.categories = opt.eval_categories
        else:
            evaluate.categories = force_categories

    return evaluate


def get_data_parameters(opt, experiment, dataset):
    data = DD()
    if dataset == "atomic":
        data.categories = sorted(opt.categories)
        # hard-coded
        data.maxe1 = 17
        data.maxe2 = 35
        data.maxr = 1

    elif dataset == "conceptnet":
        data.rel = opt.relation_format
        data.trainsize = opt.training_set_size
        data.devversion = opt.development_set_versions_to_use
        data.maxe1 = opt.max_event_1_size
        data.maxe2 = opt.max_event_2_size
        if data.rel == "language":
            # hard-coded
            data.maxr = 5
        else:
            # hard-coded
            data.maxr = 1

    return data


def get_training_parameters(opt):
    train = DD()
    static = DD()
    static.exp = opt.exp

    static.seed = opt.random_seed

    # weight decay
    static.l2 = opt.l2
    static.vl2 = True
    static.lrsched = opt.learning_rate_schedule  # 'warmup_linear'
    static.lrwarm = opt.learning_rate_warmup  # 0.002

    # gradient clipping
    static.clip = opt.clip

    # what loss function to use
    static.loss = opt.loss

    dynamic = DD()
    dynamic.lr = opt.learning_rate  # learning rate
    dynamic.bs = opt.batch_size  # batch size
    # optimizer to use {adam, rmsprop, etc.}
    dynamic.optim = opt.optimizer

    # rmsprop
    # alpha is interpolation average

    static.update(opt[dynamic.optim])

    train.static = static
    train.dynamic = dynamic

    return train


def get_net_parameters(opt):
    net = DD()
    net.model = opt.model
    net.nL = opt.num_layers
    net.nH = opt.num_heads
    net.hSize = opt.hidden_dim
    net.edpt = opt.embedding_dropout
    net.adpt = opt.attention_dropout
    net.rdpt = opt.residual_dropout
    net.odpt = opt.output_dropout
    net.pt = opt.pretrain
    net.afn = opt.activation

    # how to intialize parameters
    # format is gauss+{}+{}.format(mean, std)
    # n = the default initialization pytorch
    net.init = opt.init

    return net


def read_config(file_):
    config = DD()
    print(file_)
    for k, v in file_.items():
        if v == "True" or v == "T" or v == "true":
            config[k] = True
        elif v == "False" or v == "F" or v == "false":
            config[k] = False
        elif type(v) == dict:
            config[k] = read_config(v)
        else:
            config[k] = v

    return config


def load_config(name):
    with open(name, "r") as f:
        config = json.load(f)
    return config