Spaces:
Sleeping
Sleeping
File size: 58,923 Bytes
cf7a8a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 |
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.40">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Simple RAG – Open-Source AI Cookbook</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
</style>
<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting-549806ee2085284f45b00abea8c6df48.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap-2be10d9e998f81ff6e49e26833438aa5.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<link rel="stylesheet" href="../styles.css">
</head>
<body class="nav-sidebar docked">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/rag_zephyr_langchain.html">RAG Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/rag_zephyr_langchain.html">RAG Zephyr & LangChain</a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation docked overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="../">Open-Source AI Cookbook</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">About</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">About Quarto</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true">
<span class="menu-text">Open-Source AI Cookbook</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true">
<span class="menu-text">RAG Techniques</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth2 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/rag_zephyr_langchain.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text">RAG Zephyr & LangChain</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/advanced_rag.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Advanced RAG</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/rag_evaluation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">RAG Evaluation</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true">
<span class="menu-text">Additional Techniques</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth2 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/automatic_embedding.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Automatic Embedding</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/faiss.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">FAISS for Efficient Search</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/single_gpu.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Single GPU Optimization</span></a>
</div>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">On this page</h2>
<ul>
<li><a href="#prepare-the-data" id="toc-prepare-the-data" class="nav-link active" data-scroll-target="#prepare-the-data">Prepare the data</a></li>
<li><a href="#create-the-embeddings-retriever" id="toc-create-the-embeddings-retriever" class="nav-link" data-scroll-target="#create-the-embeddings-retriever">Create the embeddings + retriever</a></li>
<li><a href="#load-quantized-model" id="toc-load-quantized-model" class="nav-link" data-scroll-target="#load-quantized-model">Load quantized model</a></li>
<li><a href="#setup-the-llm-chain" id="toc-setup-the-llm-chain" class="nav-link" data-scroll-target="#setup-the-llm-chain">Setup the LLM chain</a></li>
<li><a href="#compare-the-results" id="toc-compare-the-results" class="nav-link" data-scroll-target="#compare-the-results">Compare the results</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/rag_zephyr_langchain.html">RAG Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/rag_zephyr_langchain.html">RAG Zephyr & LangChain</a></li></ol></nav>
<div class="quarto-title">
<h1 class="title">Simple RAG</h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<div id="78116675" class="cell" data-execution_count="1">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="op">!</span>pip install <span class="op">-</span>q torch transformers accelerate bitsandbytes transformers sentence<span class="op">-</span>transformers faiss<span class="op">-</span>gpu</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="be6b2c06" class="cell" data-execution_count="2">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="op">!</span>pip install <span class="op">-</span>q langchain</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>If running in Google Colab, you may need to run this cell to make sure you’re using UTF-8 locale to install LangChain</p>
<div id="4dc3a73a" class="cell" data-execution_count="3">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> locale</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>locale.getpreferredencoding <span class="op">=</span> <span class="kw">lambda</span>: <span class="st">"UTF-8"</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div>
<section id="prepare-the-data" class="level2">
<h2 class="anchored" data-anchor-id="prepare-the-data">Prepare the data</h2>
<p>In this example, we’ll load all of the issues (both open and closed) from <a href="https://github.com/huggingface/peft">PEFT library’s repo</a>.</p>
<p>First, you need to acquire a <a href="https://github.com/settings/tokens?type=beta">GitHub personal access token</a> to access the GitHub API.</p>
<div id="99d8d506" class="cell" data-execution_count="4">
<div class="sourceCode cell-code" id="annotated-cell-3"><pre class="sourceCode python code-annotation-code code-with-copy code-annotated"><code class="sourceCode python"><span id="annotated-cell-3-1"><a href="#annotated-cell-3-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> getpass <span class="im">import</span> getpass</span>
<span id="annotated-cell-3-2"><a href="#annotated-cell-3-2" aria-hidden="true" tabindex="-1"></a></span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-3" data-target-annotation="1">1</button><span id="annotated-cell-3-3" class="code-annotation-target"><a href="#annotated-cell-3-3" aria-hidden="true" tabindex="-1"></a>ACCESS_TOKEN <span class="op">=</span> getpass(<span class="st">"YOUR_GITHUB_PERSONAL_TOKEN"</span>)</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-annotation">
<dl class="code-annotation-container-hidden code-annotation-container-grid">
<dt data-target-cell="annotated-cell-3" data-target-annotation="1">1</dt>
<dd>
<span data-code-cell="annotated-cell-3" data-code-lines="3" data-code-annotation="1">You can also use an environment variable to store your token.</span>
</dd>
</dl>
</div>
</div>
<p>Next, we’ll load all of the issues in the <a href="https://github.com/huggingface/peft">huggingface/peft</a> repo: - By default, pull requests are considered issues as well, here we chose to exclude them from data with by setting <code>include_prs=False</code> - Setting <code>state = "all"</code> means we will load both open and closed issues.</p>
<div id="4aba18cd" class="cell" data-execution_count="5">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.document_loaders <span class="im">import</span> GitHubIssuesLoader</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>loader <span class="op">=</span> GitHubIssuesLoader(</span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a> repo<span class="op">=</span><span class="st">"huggingface/peft"</span>,</span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a> access_token<span class="op">=</span>ACCESS_TOKEN,</span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a> include_prs<span class="op">=</span><span class="va">False</span>,</span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a> state<span class="op">=</span><span class="st">"all"</span></span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>docs <span class="op">=</span> loader.load()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>The content of individual GitHub issues may be longer than what an embedding model can take as input. If we want to embed all of the available content, we need to chunk the documents into appropriately sized pieces.</p>
<p>The most common and straightforward approach to chunking is to define a fixed size of chunks and whether there should be any overlap between them. Keeping some overlap between chunks allows us to preserve some semantic context between the chunks.</p>
<p>Other approaches are typically more involved and take into account the documents’ structure and context. For example, one may want to split a document based on sentences or paragraphs, or create chunks based on the</p>
<p>The fixed-size chunking, however, works well for most common cases, so that is what we’ll do here.</p>
<div id="1ee02e26" class="cell" data-execution_count="6">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.text_splitter <span class="im">import</span> CharacterTextSplitter</span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>splitter <span class="op">=</span> CharacterTextSplitter(chunk_size<span class="op">=</span><span class="dv">512</span>, chunk_overlap<span class="op">=</span><span class="dv">30</span>)</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>chunked_docs <span class="op">=</span> splitter.split_documents(docs)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="create-the-embeddings-retriever" class="level2">
<h2 class="anchored" data-anchor-id="create-the-embeddings-retriever">Create the embeddings + retriever</h2>
<p>Now that the docs are all of the appropriate size, we can create a database with their embeddings.</p>
<p>To create document chunk embeddings we’ll use the <code>HuggingFaceEmbeddings</code> and the <a href="https://huggingface.co./BAAI/bge-base-en-v1.5"><code>BAAI/bge-base-en-v1.5</code></a> embeddings model. To create the vector database, we’ll use <code>FAISS</code>, a library developed by Facebook AI. This library offers efficient similarity search and clustering of dense vectors, which is what we need here. FAISS is currently one of the most used libraries for NN search in massive datasets.</p>
<div class="callout callout-style-default callout-tip callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Tip
</div>
</div>
<div class="callout-body-container callout-body">
<p>There are many other embeddings models available on the Hub, and you can keep an eye on the best performing ones by checking the <a href="https://huggingface.co./spaces/mteb/leaderboard">Massive Text Embedding Benchmark (MTEB) Leaderboard</a>.</p>
</div>
</div>
<p>We’ll access both the embeddings model and FAISS via LangChain API.</p>
<div id="3342a691" class="cell" data-execution_count="7">
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.vectorstores <span class="im">import</span> FAISS</span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.embeddings <span class="im">import</span> HuggingFaceEmbeddings</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>db <span class="op">=</span> FAISS.from_documents(chunked_docs,</span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a> HuggingFaceEmbeddings(model_name<span class="op">=</span><span class="st">'BAAI/bge-base-en-v1.5'</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We need a way to return(retrieve) the documents given an unstructured query. For that, we’ll use the <code>as_retriever</code> method using the <code>db</code> as a backbone: - <code>search_type="similarity"</code> means we want to perform similarity search between the query and documents - <code>search_kwargs={'k': 4}</code> instructs the retriever to return top 4 results.</p>
<div id="28bd25f2" class="cell" data-execution_count="8">
<div class="sourceCode cell-code" id="annotated-cell-7"><pre class="sourceCode python code-annotation-code code-with-copy code-annotated"><code class="sourceCode python"><span id="annotated-cell-7-1"><a href="#annotated-cell-7-1" aria-hidden="true" tabindex="-1"></a>retriever <span class="op">=</span> db.as_retriever(</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-7" data-target-annotation="1">1</button><span id="annotated-cell-7-2" class="code-annotation-target"><a href="#annotated-cell-7-2" aria-hidden="true" tabindex="-1"></a> search_type<span class="op">=</span><span class="st">"similarity"</span>,</span>
<span id="annotated-cell-7-3"><a href="#annotated-cell-7-3" aria-hidden="true" tabindex="-1"></a> search_kwargs<span class="op">=</span>{<span class="st">'k'</span>: <span class="dv">4</span>}</span>
<span id="annotated-cell-7-4"><a href="#annotated-cell-7-4" aria-hidden="true" tabindex="-1"></a>)</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-annotation">
<dl class="code-annotation-container-hidden code-annotation-container-grid">
<dt data-target-cell="annotated-cell-7" data-target-annotation="1">1</dt>
<dd>
<span data-code-cell="annotated-cell-7" data-code-lines="2,3" data-code-annotation="1">The ideal search type is context dependent, and you should experiment to find the best one for your data.</span>
</dd>
</dl>
</div>
</div>
<p>The vector database and retriever are now set up, next we need to set up the next piece of the chain - the model.</p>
</section>
<section id="load-quantized-model" class="level2">
<h2 class="anchored" data-anchor-id="load-quantized-model">Load quantized model</h2>
<p>For this example, we chose <a href="https://huggingface.co./HuggingFaceH4/zephyr-7b-beta"><code>HuggingFaceH4/zephyr-7b-beta</code></a>, a small but powerful model. To make inference faster, we will load the quantized version of the model:</p>
<div class="callout callout-style-default callout-tip callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Tip
</div>
</div>
<div class="callout-body-container callout-body">
<p>With many models being released every week, you may want to substitute this model to the latest and greatest. The best way to keep track of open source LLMs is to check the <a href="https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard">Open-source LLM leaderboard</a>.</p>
</div>
</div>
<div id="e5288d87" class="cell" data-execution_count="9">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> torch</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>model_name <span class="op">=</span> <span class="st">'HuggingFaceH4/zephyr-7b-beta'</span></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>bnb_config <span class="op">=</span> BitsAndBytesConfig(</span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a> load_in_4bit<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a> bnb_4bit_use_double_quant<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a> bnb_4bit_quant_type<span class="op">=</span><span class="st">"nf4"</span>,</span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a> bnb_4bit_compute_dtype<span class="op">=</span>torch.bfloat16</span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>model <span class="op">=</span> AutoModelForCausalLM.from_pretrained(model_name, quantization_config<span class="op">=</span>bnb_config)</span>
<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>tokenizer <span class="op">=</span> AutoTokenizer.from_pretrained(model_name)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="setup-the-llm-chain" class="level2">
<h2 class="anchored" data-anchor-id="setup-the-llm-chain">Setup the LLM chain</h2>
<p>Finally, we have all the pieces we need to set up the LLM chain.</p>
<p>First, create a text_generation pipeline using the loaded model and its tokenizer.</p>
<p>Next, create a prompt template - this should follow the format of the model, so if you substitute the model checkpoint, make sure to use the appropriate formatting.</p>
<div id="389798fe" class="cell" data-execution_count="10">
<div class="sourceCode cell-code" id="annotated-cell-9"><pre class="sourceCode python code-annotation-code code-with-copy code-annotated"><code class="sourceCode python"><span id="annotated-cell-9-1"><a href="#annotated-cell-9-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.llms <span class="im">import</span> HuggingFacePipeline</span>
<span id="annotated-cell-9-2"><a href="#annotated-cell-9-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.prompts <span class="im">import</span> PromptTemplate</span>
<span id="annotated-cell-9-3"><a href="#annotated-cell-9-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> pipeline</span>
<span id="annotated-cell-9-4"><a href="#annotated-cell-9-4" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain_core.output_parsers <span class="im">import</span> StrOutputParser</span>
<span id="annotated-cell-9-5"><a href="#annotated-cell-9-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-6"><a href="#annotated-cell-9-6" aria-hidden="true" tabindex="-1"></a>text_generation_pipeline <span class="op">=</span> pipeline(</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="1">1</button><span id="annotated-cell-9-7" class="code-annotation-target"><a href="#annotated-cell-9-7" aria-hidden="true" tabindex="-1"></a> model<span class="op">=</span>model,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="2">2</button><span id="annotated-cell-9-8" class="code-annotation-target"><a href="#annotated-cell-9-8" aria-hidden="true" tabindex="-1"></a> tokenizer<span class="op">=</span>tokenizer,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="3">3</button><span id="annotated-cell-9-9" class="code-annotation-target"><a href="#annotated-cell-9-9" aria-hidden="true" tabindex="-1"></a> task<span class="op">=</span><span class="st">"text-generation"</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="4">4</button><span id="annotated-cell-9-10" class="code-annotation-target"><a href="#annotated-cell-9-10" aria-hidden="true" tabindex="-1"></a> temperature<span class="op">=</span><span class="fl">0.2</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="5">5</button><span id="annotated-cell-9-11" class="code-annotation-target"><a href="#annotated-cell-9-11" aria-hidden="true" tabindex="-1"></a> do_sample<span class="op">=</span><span class="va">True</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="6">6</button><span id="annotated-cell-9-12" class="code-annotation-target"><a href="#annotated-cell-9-12" aria-hidden="true" tabindex="-1"></a> repetition_penalty<span class="op">=</span><span class="fl">1.1</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="7">7</button><span id="annotated-cell-9-13" class="code-annotation-target"><a href="#annotated-cell-9-13" aria-hidden="true" tabindex="-1"></a> return_full_text<span class="op">=</span><span class="va">True</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-9" data-target-annotation="8">8</button><span id="annotated-cell-9-14" class="code-annotation-target"><a href="#annotated-cell-9-14" aria-hidden="true" tabindex="-1"></a> max_new_tokens<span class="op">=</span><span class="dv">400</span>,</span>
<span id="annotated-cell-9-15"><a href="#annotated-cell-9-15" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="annotated-cell-9-16"><a href="#annotated-cell-9-16" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-17"><a href="#annotated-cell-9-17" aria-hidden="true" tabindex="-1"></a>llm <span class="op">=</span> HuggingFacePipeline(pipeline<span class="op">=</span>text_generation_pipeline)</span>
<span id="annotated-cell-9-18"><a href="#annotated-cell-9-18" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-19"><a href="#annotated-cell-9-19" aria-hidden="true" tabindex="-1"></a>prompt_template <span class="op">=</span> <span class="st">"""</span></span>
<span id="annotated-cell-9-20"><a href="#annotated-cell-9-20" aria-hidden="true" tabindex="-1"></a><span class="st"><|system|></span></span>
<span id="annotated-cell-9-21"><a href="#annotated-cell-9-21" aria-hidden="true" tabindex="-1"></a><span class="st">Answer the question based on your knowledge. Use the following context to help:</span></span>
<span id="annotated-cell-9-22"><a href="#annotated-cell-9-22" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-23"><a href="#annotated-cell-9-23" aria-hidden="true" tabindex="-1"></a><span class="sc">{context}</span></span>
<span id="annotated-cell-9-24"><a href="#annotated-cell-9-24" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-25"><a href="#annotated-cell-9-25" aria-hidden="true" tabindex="-1"></a><span class="st"></s></span></span>
<span id="annotated-cell-9-26"><a href="#annotated-cell-9-26" aria-hidden="true" tabindex="-1"></a><span class="st"><|user|></span></span>
<span id="annotated-cell-9-27"><a href="#annotated-cell-9-27" aria-hidden="true" tabindex="-1"></a><span class="sc">{question}</span></span>
<span id="annotated-cell-9-28"><a href="#annotated-cell-9-28" aria-hidden="true" tabindex="-1"></a><span class="st"></s></span></span>
<span id="annotated-cell-9-29"><a href="#annotated-cell-9-29" aria-hidden="true" tabindex="-1"></a><span class="st"><|assistant|></span></span>
<span id="annotated-cell-9-30"><a href="#annotated-cell-9-30" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-31"><a href="#annotated-cell-9-31" aria-hidden="true" tabindex="-1"></a><span class="st"> """</span></span>
<span id="annotated-cell-9-32"><a href="#annotated-cell-9-32" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-33"><a href="#annotated-cell-9-33" aria-hidden="true" tabindex="-1"></a>prompt <span class="op">=</span> PromptTemplate(</span>
<span id="annotated-cell-9-34"><a href="#annotated-cell-9-34" aria-hidden="true" tabindex="-1"></a> input_variables<span class="op">=</span>[<span class="st">"context"</span>, <span class="st">"question"</span>],</span>
<span id="annotated-cell-9-35"><a href="#annotated-cell-9-35" aria-hidden="true" tabindex="-1"></a> template<span class="op">=</span>prompt_template,</span>
<span id="annotated-cell-9-36"><a href="#annotated-cell-9-36" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="annotated-cell-9-37"><a href="#annotated-cell-9-37" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-9-38"><a href="#annotated-cell-9-38" aria-hidden="true" tabindex="-1"></a>llm_chain <span class="op">=</span> prompt <span class="op">|</span> llm <span class="op">|</span> StrOutputParser()</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-annotation">
<dl class="code-annotation-container-hidden code-annotation-container-grid">
<dt data-target-cell="annotated-cell-9" data-target-annotation="1">1</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="7" data-code-annotation="1">The pre-trained model for text generation.</span>
</dd>
<dt data-target-cell="annotated-cell-9" data-target-annotation="2">2</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="8" data-code-annotation="2">Tokenizer to preprocess input text and postprocess generated output.</span>
</dd>
<dt data-target-cell="annotated-cell-9" data-target-annotation="3">3</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="9" data-code-annotation="3">Specifies the task as text generation.</span>
</dd>
<dt data-target-cell="annotated-cell-9" data-target-annotation="4">4</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="10" data-code-annotation="4">Controls the randomness in the output generation. Lower values make the output more deterministic.</span>
</dd>
<dt data-target-cell="annotated-cell-9" data-target-annotation="5">5</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="11" data-code-annotation="5">Enables sampling to introduce randomness in the output generation.</span>
</dd>
<dt data-target-cell="annotated-cell-9" data-target-annotation="6">6</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="12" data-code-annotation="6">Penalizes repetition in the output to encourage diversity.</span>
</dd>
<dt data-target-cell="annotated-cell-9" data-target-annotation="7">7</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="13" data-code-annotation="7">Returns the full generated text including the input prompt.</span>
</dd>
<dt data-target-cell="annotated-cell-9" data-target-annotation="8">8</dt>
<dd>
<span data-code-cell="annotated-cell-9" data-code-lines="14" data-code-annotation="8">Limits the maximum number of new tokens generated.</span>
</dd>
</dl>
</div>
</div>
<p>Note: <em>You can also use <code>tokenizer.apply_chat_template</code> to convert a list of messages (as dicts: <code>{'role': 'user', 'content': '(...)'}</code>) into a string with the appropriate chat format.</em></p>
<p>Finally, we need to combine the <code>llm_chain</code> with the retriever to create a RAG chain. We pass the original question through to the final generation step, as well as the retrieved context docs:</p>
<div id="2ad1978e" class="cell" data-execution_count="11">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain_core.runnables <span class="im">import</span> RunnablePassthrough</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>retriever <span class="op">=</span> db.as_retriever()</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>rag_chain <span class="op">=</span> (</span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a> {<span class="st">"context"</span>: retriever, <span class="st">"question"</span>: RunnablePassthrough()}</span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a> <span class="op">|</span> llm_chain</span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="compare-the-results" class="level2">
<h2 class="anchored" data-anchor-id="compare-the-results">Compare the results</h2>
<p>Let’s see the difference RAG makes in generating answers to the library-specific questions.</p>
<div id="aa570a95" class="cell" data-execution_count="12">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>question <span class="op">=</span> <span class="st">"How do you combine multiple adapters?"</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>First, let’s see what kind of answer we can get with just the model itself, no context added:</p>
<div id="3c1688aa" class="cell" data-execution_count="13">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>llm_chain.invoke({<span class="st">"context"</span>:<span class="st">""</span>, <span class="st">"question"</span>: question})</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>As you can see, the model interpreted the question as one about physical computer adapters, while in the context of PEFT, “adapters” refer to LoRA adapters. Let’s see if adding context from GitHub issues helps the model give a more relevant answer:</p>
<div id="57388c24" class="cell" data-execution_count="14">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>rag_chain.invoke(question)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>As we can see, the added context, really helps the exact same model, provide a much more relevant and informed answer to the library-specific question.</p>
<p>Notably, combining multiple adapters for inference has been added to the library, and one can find this information in the documentation, so for the next iteration of this RAG it may be worth including documentation embeddings.</p>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const onCopySuccess = function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
}
const getTextToCopy = function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
text: getTextToCopy
});
clipboard.on('success', onCopySuccess);
if (window.document.getElementById('quarto-embedded-source-code-modal')) {
const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
text: getTextToCopy,
container: window.document.getElementById('quarto-embedded-source-code-modal')
});
clipboardModal.on('success', onCopySuccess);
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
const annoteTargets = window.document.querySelectorAll('.code-annotation-anchor');
for (let i=0; i<annoteTargets.length; i++) {
const annoteTarget = annoteTargets[i];
const targetCell = annoteTarget.getAttribute("data-target-cell");
const targetAnnotation = annoteTarget.getAttribute("data-target-annotation");
const contentFn = () => {
const content = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
if (content) {
const tipContent = content.cloneNode(true);
tipContent.classList.add("code-annotation-tip-content");
return tipContent.outerHTML;
}
}
const config = {
allowHTML: true,
content: contentFn,
onShow: (instance) => {
selectCodeLines(instance.reference);
instance.reference.classList.add('code-annotation-active');
window.tippy.hideAll();
},
onHide: (instance) => {
unselectCodeLines();
instance.reference.classList.remove('code-annotation-active');
},
maxWidth: 300,
delay: [50, 0],
duration: [200, 0],
offset: [5, 10],
arrow: true,
appendTo: function(el) {
return el.parentElement.parentElement.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'right',
popperOptions: {
modifiers: [
{
name: 'flip',
options: {
flipVariations: false, // true by default
allowedAutoPlacements: ['right'],
fallbackPlacements: ['right', 'top', 'top-start', 'top-end', 'bottom', 'bottom-start', 'bottom-end', 'left'],
},
},
{
name: 'preventOverflow',
options: {
mainAxis: false,
altAxis: false
}
}
]
}
};
window.tippy(annoteTarget, config);
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html> |