File size: 11,773 Bytes
6493bef
de6fc01
0339ef7
 
 
6493bef
 
 
 
75f9ceb
6493bef
de6fc01
6493bef
de6fc01
6493bef
 
0339ef7
6493bef
 
 
 
 
 
 
 
 
 
 
75f9ceb
 
 
6493bef
75f9ceb
 
 
6493bef
 
 
 
 
 
 
 
fced742
75f9ceb
 
 
 
 
 
 
6493bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75f9ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a8f1f
75f9ceb
 
 
 
 
 
c2a8f1f
75f9ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf1270
75f9ceb
1cf1270
568c204
 
 
 
75f9ceb
568c204
 
 
 
 
 
 
 
 
75f9ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568c204
1cf1270
0339ef7
6493bef
 
 
 
 
75f9ceb
 
 
 
 
 
 
 
 
 
 
 
 
0339ef7
1cf1270
 
 
6493bef
1cf1270
 
6493bef
1cf1270
 
6493bef
1cf1270
 
6493bef
1cf1270
 
 
75f9ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf1270
 
 
 
75f9ceb
1cf1270
568c204
1cf1270
75f9ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf1270
0339ef7
 
 
 
 
6493bef
8dc5cb0
 
6493bef
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from typing import Callable
import gradio as gr
import asyncio
import time
import threading
from src.retrieve_data import (
    get_gpus_for_leaderboard,
    get_leaderboard_names,
    get_leaderboard_submissions,
    get_submission_count,
)

from src.envs import CACHE_TIMEOUT, BACKGROUND_REFRESH_INTERVAL

# key: func_name:args:kwargs, value: (timestamp, data)
cache = {}

active_selections = {
    "leaderboard": None,
    "gpu": None,
}

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)

background_refresh_running = True


def cached_fetch(
    func: Callable, *args, force_refresh=False, limit=None, offset=0, **kwargs
):
    """Fetch data with caching to avoid redundant API calls"""
    cache_key = (
        f"{func.__name__}:{str(args)}:{str(kwargs)}:limit={limit}:offset={offset}"
    )

    current_time = time.time()

    if not force_refresh and cache_key in cache:
        timestamp, data = cache[cache_key]
        if current_time - timestamp < CACHE_TIMEOUT:
            return data

    print(f"Fetching {cache_key}")
    if func.__name__ == "get_leaderboard_submissions":
        result = loop.run_until_complete(
            func(*args, limit=limit, offset=offset, **kwargs)
        )
    else:
        result = loop.run_until_complete(func(*args, **kwargs))

    cache[cache_key] = (current_time, result)
    return result


def invalidate_cache(prefix=None):
    """Invalidate all cache entries or those matching a prefix"""
    global cache
    if prefix is None:
        cache = {}
    else:
        cache = {k: v for k, v in cache.items() if not k.startswith(prefix)}


def background_refresh():
    """Background thread to refresh active data periodically"""
    while background_refresh_running:
        try:
            time.sleep(BACKGROUND_REFRESH_INTERVAL)

            lb_name = active_selections["leaderboard"]
            gpu_name = active_selections["gpu"]

            if lb_name and gpu_name:
                cached_fetch(
                    get_leaderboard_submissions, lb_name, gpu_name, force_refresh=True
                )

                cached_fetch(get_gpus_for_leaderboard, lb_name, force_refresh=True)
            cached_fetch(get_leaderboard_names, force_refresh=True)

        except Exception as e:
            print(f"Background refresh error: {e}")


def build_ui():
    # Define the function first before using it
    def create_table_for_lb_with_global_rank(lb_data, offset):
        """Create table with global ranks instead of page-specific ranks"""
        headers = [
            "Rank",
            "User Name",
            "Submission ID",
            "Submission Name",
            "Runtime (ms)",
            "Submission Date",
        ]

        rows = []
        for i, result in enumerate(lb_data.results, 1):
            # Calculate global rank by adding offset
            global_rank = i + offset

            # Only show medals for the top 3 overall and only on the first page
            if offset == 0 and global_rank <= 3:  # first page and top 3
                if global_rank == 1:
                    rank_display = "๐Ÿฅ‡ 1"
                elif global_rank == 2:
                    rank_display = "๐Ÿฅˆ 2"
                elif global_rank == 3:
                    rank_display = "๐Ÿฅ‰ 3"
            else:
                rank_display = str(global_rank)

            score = float(result.submission_score) * 1000
            rows.append(
                [
                    rank_display,
                    result.user_name,
                    str(result.submission_id),  # Add submission ID as a new column
                    result.submission_name,
                    f"{score:.4f}",
                    result.submission_time.strftime("%Y-%m-%d %H:%M:%S"),
                ]
            )

        # Apply different class based on whether it's the first page or not
        elem_classes = "" if offset == 0 else "non-first-page-table"

        df = gr.Dataframe(
            headers=headers,
            datatype=[
                "str",
                "str",
                "str",  # Submission ID
                "str",
                "str",
                "timestamp",
            ],
            value=rows,
            interactive=False,
            elem_classes=elem_classes,
        )

        return df

    with gr.Blocks(
        title="ML Leaderboards",
        theme=gr.themes.Soft(),
        css="""
        /* Apply medal colors to all tables by default */
        .gradio-container table tr:nth-child(1) {
            background-color: rgba(255, 215, 0, 0.2) !important;  /* Gold */
        }
        .gradio-container table tr:nth-child(2) {
            background-color: rgba(192, 192, 192, 0.2) !important;  /* Silver */
        }
        .gradio-container table tr:nth-child(3) {
            background-color: rgba(205, 127, 50, 0.2) !important;  /* Bronze */
        }
        
        /* Remove medal colors for non-first pages */
        .non-first-page-table tr:nth-child(1),
        .non-first-page-table tr:nth-child(2),
        .non-first-page-table tr:nth-child(3) {
            background-color: inherit !important;
        }
        
        .pagination-controls {
            display: flex;
            justify-content: space-between;
            align-items: center;
            margin-top: 10px;
            width: 100%;
        }
        
        .pagination-info {
            text-align: center;
            flex-grow: 1;
        }
        
        .pagination-button {
            min-width: 100px;
        }
        """,
    ) as app:
        gr.Markdown("# ๐Ÿฟ KernelBot Leaderboard ๐Ÿฟ")

        lb_names = cached_fetch(get_leaderboard_names)
        selected_lb = lb_names[0]
        gpu_names = cached_fetch(get_gpus_for_leaderboard, selected_lb)
        selected_gpu = gpu_names[0]

        # Set default pagination values
        items_per_page = 10
        current_page = 1

        data = cached_fetch(
            get_leaderboard_submissions,
            selected_lb,
            selected_gpu,
            limit=items_per_page,
            offset=0,
        )
        total_count = cached_fetch(get_submission_count, selected_lb, selected_gpu)
        total_pages = (total_count + items_per_page - 1) // items_per_page

        with gr.Row():
            with gr.Column(scale=1):
                lb_dropdown = gr.Dropdown(
                    choices=lb_names,
                    label="Select Leaderboard",
                    interactive=True,
                    value=selected_lb,
                )
                gpu_dropdown = gr.Dropdown(
                    choices=gpu_names,
                    label="Select GPU",
                    interactive=True,
                    value=selected_gpu,
                )

        with gr.Row():
            # Initial table is first page
            results_table = create_table_for_lb_with_global_rank(data, 0)

        with gr.Row(elem_classes="pagination-controls"):
            with gr.Column(scale=1, min_width=100, elem_classes="pagination-button"):
                prev_btn = gr.Button("โ† Previous", interactive=(current_page > 1))

            with gr.Column(scale=2, elem_classes="pagination-info"):
                page_info = gr.Markdown(f"Page {current_page} of {total_pages}")

            with gr.Column(scale=1, min_width=100, elem_classes="pagination-button"):
                next_btn = gr.Button("Next โ†’", interactive=(current_page < total_pages))

        def on_lb_change(lb_name):
            gpu_choices = cached_fetch(get_gpus_for_leaderboard, lb_name)

            active_selections["leaderboard"] = lb_name
            if gpu_choices:
                active_selections["gpu"] = gpu_choices[0]

            # Reset to page 1 when changing leaderboard
            data = cached_fetch(
                get_leaderboard_submissions,
                lb_name,
                gpu_choices[0] if gpu_choices else None,
                limit=items_per_page,
                offset=0,
            )

            # Get total count for pagination
            total_count = cached_fetch(
                get_submission_count, lb_name, gpu_choices[0] if gpu_choices else None
            )
            total_pages = (total_count + items_per_page - 1) // items_per_page

            return (
                gr.update(
                    choices=gpu_choices, value=gpu_choices[0] if gpu_choices else None
                ),
                create_table_for_lb_with_global_rank(data, 0),
                gr.update(value=f"Page 1 of {total_pages}"),
                gr.update(interactive=False),  # prev button disabled on page 1
                gr.update(
                    interactive=(total_pages > 1)
                ),  # next button enabled if more than 1 page
            )

        def update_table(lb_name, gpu_name, page=1):
            if not gpu_name:
                return None, gr.update(), gr.update(), gr.update()

            active_selections["gpu"] = gpu_name
            offset = (page - 1) * items_per_page

            data = cached_fetch(
                get_leaderboard_submissions,
                lb_name,
                gpu_name,
                limit=items_per_page,
                offset=offset,
            )

            # Get total count for pagination
            total_count = cached_fetch(get_submission_count, lb_name, gpu_name)
            total_pages = (total_count + items_per_page - 1) // items_per_page

            # Create table with global ranks
            table = create_table_for_lb_with_global_rank(data, offset)

            return (
                table,
                gr.update(value=f"Page {page} of {total_pages}"),
                gr.update(interactive=(page > 1)),
                gr.update(interactive=(page < total_pages)),
            )

        def next_page():
            nonlocal current_page
            lb_name = active_selections["leaderboard"]
            gpu_name = active_selections["gpu"]

            # Get total count to check if we can go to next page
            total_count = cached_fetch(get_submission_count, lb_name, gpu_name)
            total_pages = (total_count + items_per_page - 1) // items_per_page

            if current_page < total_pages:
                current_page += 1
                return update_table(lb_name, gpu_name, current_page)
            return update_table(lb_name, gpu_name, current_page)

        def prev_page():
            nonlocal current_page
            if current_page > 1:
                current_page -= 1
            lb_name = active_selections["leaderboard"]
            gpu_name = active_selections["gpu"]
            return update_table(lb_name, gpu_name, current_page)

        lb_dropdown.change(
            fn=on_lb_change,
            inputs=[lb_dropdown],
            outputs=[gpu_dropdown, results_table, page_info, prev_btn, next_btn],
        )

        gpu_dropdown.change(
            fn=lambda lb, gpu: update_table(lb, gpu, 1),  # Reset to page 1
            inputs=[lb_dropdown, gpu_dropdown],
            outputs=[results_table, page_info, prev_btn, next_btn],
        )

        next_btn.click(
            fn=next_page,
            inputs=[],
            outputs=[results_table, page_info, prev_btn, next_btn],
        )

        prev_btn.click(
            fn=prev_page,
            inputs=[],
            outputs=[results_table, page_info, prev_btn, next_btn],
        )

    return app


if __name__ == "__main__":
    try:
        background_thread = threading.Thread(target=background_refresh, daemon=True)
        background_thread.start()
        app = build_ui()
        app.launch()
    finally:
        background_refresh_running = False
        background_thread.join(timeout=1.0)
        loop.close()