import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import random import json from concurrent.futures import ThreadPoolExecutor, as_completed from typing import List, Dict, Any, Optional from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT from base import BaseClassifier class LLMClassifier(BaseClassifier): """Classifier using a Large Language Model for more accurate but slower classification""" def __init__(self, client, model="gpt-3.5-turbo"): super().__init__() self.client = client self.model = model def classify( self, texts: List[str], categories: Optional[List[str]] = None ) -> List[Dict[str, Any]]: """Classify texts using an LLM with parallel processing""" if not categories: # First, use LLM to generate appropriate categories categories = self._suggest_categories(texts) # Process texts in parallel with ThreadPoolExecutor(max_workers=10) as executor: # Submit all tasks with their original indices future_to_index = { executor.submit(self._classify_text, text, categories): idx for idx, text in enumerate(texts) } # Initialize results list with None values results = [None] * len(texts) # Collect results as they complete for future in as_completed(future_to_index): original_idx = future_to_index[future] try: result = future.result() results[original_idx] = result except Exception as e: print(f"Error processing text: {str(e)}") results[original_idx] = { "category": categories[0], "confidence": 50, "explanation": f"Error during classification: {str(e)}", } return results def _suggest_categories(self, texts: List[str], sample_size: int = 20) -> List[str]: """Use LLM to suggest appropriate categories for the dataset""" # Take a sample of texts to avoid token limitations if len(texts) > sample_size: sample_texts = random.sample(texts, sample_size) else: sample_texts = texts prompt = CATEGORY_SUGGESTION_PROMPT.format("\n---\n".join(sample_texts)) try: response = self.client.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0.2, max_tokens=100, ) # Parse response to get categories categories_text = response.choices[0].message.content.strip() categories = [cat.strip() for cat in categories_text.split(",")] return categories except Exception as e: # Fallback to default categories on error print(f"Error suggesting categories: {str(e)}") return self._generate_default_categories(texts) def _classify_text(self, text: str, categories: List[str]) -> Dict[str, Any]: """Use LLM to classify a single text""" prompt = TEXT_CLASSIFICATION_PROMPT.format( categories=", ".join(categories), text=text ) try: response = self.client.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0, max_tokens=200, ) # Parse JSON response response_text = response.choices[0].message.content.strip() result = json.loads(response_text) # Ensure all required fields are present if not all(k in result for k in ["category", "confidence", "explanation"]): raise ValueError("Missing required fields in LLM response") # Validate category is in the list if result["category"] not in categories: result["category"] = categories[ 0 ] # Default to first category if invalid # Validate confidence is a number between 0 and 100 try: result["confidence"] = float(result["confidence"]) if not 0 <= result["confidence"] <= 100: result["confidence"] = 50 except: result["confidence"] = 50 return result except json.JSONDecodeError: # Fall back to simple parsing if JSON fails category = categories[0] # Default for cat in categories: if cat.lower() in response_text.lower(): category = cat break return { "category": category, "confidence": 50, "explanation": f"Classification based on language model analysis. (Note: Structured response parsing failed)", }