import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import random import json from concurrent.futures import ThreadPoolExecutor, as_completed from typing import List, Dict, Any, Optional from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT class BaseClassifier: """Base class for text classifiers""" def __init__(self) -> None: pass def classify(self, texts: List[str], categories: Optional[List[str]] = None) -> List[Dict[str, Any]]: """ Classify a list of texts into categories Args: texts (list): List of text strings to classify categories (list, optional): List of category names. If None, categories will be auto-detected Returns: list: List of classification results with categories, confidence scores, and explanations """ raise NotImplementedError("Subclasses must implement this method") def _generate_default_categories(self, texts: List[str], num_clusters: int = 5) -> List[str]: """ Generate default categories based on text clustering Args: texts (list): List of text strings num_clusters (int): Number of clusters to generate Returns: list: List of category names """ # Simple implementation - in real system this would be more sophisticated default_categories: List[str] = [f"Category {i+1}" for i in range(num_clusters)] return default_categories