Spaces:
Sleeping
Sleeping
new endppoints
Browse files- server.py +130 -0
- test_server.py +85 -1
server.py
CHANGED
@@ -9,6 +9,8 @@ import asyncio
|
|
9 |
from client import get_client, initialize_client
|
10 |
import os
|
11 |
from dotenv import load_dotenv
|
|
|
|
|
12 |
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
@@ -44,14 +46,67 @@ class TextInput(BaseModel):
|
|
44 |
text: str
|
45 |
categories: Optional[List[str]] = None
|
46 |
|
|
|
|
|
|
|
|
|
47 |
class ClassificationResponse(BaseModel):
|
48 |
category: str
|
49 |
confidence: float
|
50 |
explanation: str
|
51 |
|
|
|
|
|
|
|
52 |
class CategorySuggestionResponse(BaseModel):
|
53 |
categories: List[str]
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
@app.post("/classify", response_model=ClassificationResponse)
|
56 |
async def classify_text(text_input: TextInput) -> ClassificationResponse:
|
57 |
try:
|
@@ -70,6 +125,27 @@ async def classify_text(text_input: TextInput) -> ClassificationResponse:
|
|
70 |
except Exception as e:
|
71 |
raise HTTPException(status_code=500, detail=str(e))
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
@app.post("/suggest-categories", response_model=CategorySuggestionResponse)
|
74 |
async def suggest_categories(texts: List[str]) -> CategorySuggestionResponse:
|
75 |
try:
|
@@ -78,6 +154,60 @@ async def suggest_categories(texts: List[str]) -> CategorySuggestionResponse:
|
|
78 |
except Exception as e:
|
79 |
raise HTTPException(status_code=500, detail=str(e))
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
if __name__ == "__main__":
|
82 |
import uvicorn
|
83 |
uvicorn.run("server:app", host="0.0.0.0", port=8000, reload=True)
|
|
|
9 |
from client import get_client, initialize_client
|
10 |
import os
|
11 |
from dotenv import load_dotenv
|
12 |
+
import pandas as pd
|
13 |
+
from utils import validate_results
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
|
|
46 |
text: str
|
47 |
categories: Optional[List[str]] = None
|
48 |
|
49 |
+
class BatchTextInput(BaseModel):
|
50 |
+
texts: List[str]
|
51 |
+
categories: Optional[List[str]] = None
|
52 |
+
|
53 |
class ClassificationResponse(BaseModel):
|
54 |
category: str
|
55 |
confidence: float
|
56 |
explanation: str
|
57 |
|
58 |
+
class BatchClassificationResponse(BaseModel):
|
59 |
+
results: List[ClassificationResponse]
|
60 |
+
|
61 |
class CategorySuggestionResponse(BaseModel):
|
62 |
categories: List[str]
|
63 |
|
64 |
+
class ModelInfoResponse(BaseModel):
|
65 |
+
model_name: str
|
66 |
+
model_version: str
|
67 |
+
max_tokens: int
|
68 |
+
temperature: float
|
69 |
+
|
70 |
+
class HealthResponse(BaseModel):
|
71 |
+
status: str
|
72 |
+
model_ready: bool
|
73 |
+
api_key_configured: bool
|
74 |
+
|
75 |
+
class ValidationSample(BaseModel):
|
76 |
+
text: str
|
77 |
+
assigned_category: str
|
78 |
+
confidence: float
|
79 |
+
|
80 |
+
class ValidationRequest(BaseModel):
|
81 |
+
samples: List[ValidationSample]
|
82 |
+
current_categories: List[str]
|
83 |
+
text_columns: List[str]
|
84 |
+
|
85 |
+
class ValidationResponse(BaseModel):
|
86 |
+
validation_report: str
|
87 |
+
accuracy_score: Optional[float] = None
|
88 |
+
misclassifications: Optional[List[Dict[str, Any]]] = None
|
89 |
+
suggested_improvements: Optional[List[str]] = None
|
90 |
+
|
91 |
+
@app.get("/health", response_model=HealthResponse)
|
92 |
+
async def health_check() -> HealthResponse:
|
93 |
+
"""Check the health status of the API"""
|
94 |
+
return HealthResponse(
|
95 |
+
status="healthy",
|
96 |
+
model_ready=client is not None,
|
97 |
+
api_key_configured=api_key is not None
|
98 |
+
)
|
99 |
+
|
100 |
+
@app.get("/model-info", response_model=ModelInfoResponse)
|
101 |
+
async def get_model_info() -> ModelInfoResponse:
|
102 |
+
"""Get information about the current model configuration"""
|
103 |
+
return ModelInfoResponse(
|
104 |
+
model_name=classifier.model,
|
105 |
+
model_version="1.0",
|
106 |
+
max_tokens=200,
|
107 |
+
temperature=0
|
108 |
+
)
|
109 |
+
|
110 |
@app.post("/classify", response_model=ClassificationResponse)
|
111 |
async def classify_text(text_input: TextInput) -> ClassificationResponse:
|
112 |
try:
|
|
|
125 |
except Exception as e:
|
126 |
raise HTTPException(status_code=500, detail=str(e))
|
127 |
|
128 |
+
@app.post("/classify-batch", response_model=BatchClassificationResponse)
|
129 |
+
async def classify_batch(batch_input: BatchTextInput) -> BatchClassificationResponse:
|
130 |
+
"""Classify multiple texts in a single request"""
|
131 |
+
try:
|
132 |
+
results: List[Dict[str, Any]] = await classifier.classify_async(
|
133 |
+
batch_input.texts,
|
134 |
+
batch_input.categories
|
135 |
+
)
|
136 |
+
|
137 |
+
return BatchClassificationResponse(
|
138 |
+
results=[
|
139 |
+
ClassificationResponse(
|
140 |
+
category=r["category"],
|
141 |
+
confidence=r["confidence"],
|
142 |
+
explanation=r["explanation"]
|
143 |
+
) for r in results
|
144 |
+
]
|
145 |
+
)
|
146 |
+
except Exception as e:
|
147 |
+
raise HTTPException(status_code=500, detail=str(e))
|
148 |
+
|
149 |
@app.post("/suggest-categories", response_model=CategorySuggestionResponse)
|
150 |
async def suggest_categories(texts: List[str]) -> CategorySuggestionResponse:
|
151 |
try:
|
|
|
154 |
except Exception as e:
|
155 |
raise HTTPException(status_code=500, detail=str(e))
|
156 |
|
157 |
+
@app.post("/validate", response_model=ValidationResponse)
|
158 |
+
async def validate_classifications(validation_request: ValidationRequest) -> ValidationResponse:
|
159 |
+
"""Validate classification results and provide improvement suggestions"""
|
160 |
+
try:
|
161 |
+
# Convert samples to DataFrame
|
162 |
+
df = pd.DataFrame([
|
163 |
+
{
|
164 |
+
"text": sample.text,
|
165 |
+
"Category": sample.assigned_category,
|
166 |
+
"Confidence": sample.confidence
|
167 |
+
}
|
168 |
+
for sample in validation_request.samples
|
169 |
+
])
|
170 |
+
|
171 |
+
# Use the validate_results function from utils
|
172 |
+
validation_report: str = validate_results(df, validation_request.text_columns, client)
|
173 |
+
|
174 |
+
# Parse the validation report to extract structured information
|
175 |
+
accuracy_score: Optional[float] = None
|
176 |
+
misclassifications: Optional[List[Dict[str, Any]]] = None
|
177 |
+
suggested_improvements: Optional[List[str]] = None
|
178 |
+
|
179 |
+
# Extract accuracy score if present
|
180 |
+
if "accuracy" in validation_report.lower():
|
181 |
+
try:
|
182 |
+
accuracy_str = validation_report.lower().split("accuracy")[1].split("%")[0].strip()
|
183 |
+
accuracy_score = float(accuracy_str) / 100
|
184 |
+
except:
|
185 |
+
pass
|
186 |
+
|
187 |
+
# Extract misclassifications
|
188 |
+
misclassifications = [
|
189 |
+
{"text": sample.text, "current_category": sample.assigned_category}
|
190 |
+
for sample in validation_request.samples
|
191 |
+
if sample.confidence < 70
|
192 |
+
]
|
193 |
+
|
194 |
+
# Extract suggested improvements
|
195 |
+
suggested_improvements = [
|
196 |
+
"Review low confidence classifications",
|
197 |
+
"Consider adding more training examples",
|
198 |
+
"Refine category definitions"
|
199 |
+
]
|
200 |
+
|
201 |
+
return ValidationResponse(
|
202 |
+
validation_report=validation_report,
|
203 |
+
accuracy_score=accuracy_score,
|
204 |
+
misclassifications=misclassifications,
|
205 |
+
suggested_improvements=suggested_improvements
|
206 |
+
)
|
207 |
+
|
208 |
+
except Exception as e:
|
209 |
+
raise HTTPException(status_code=500, detail=str(e))
|
210 |
+
|
211 |
if __name__ == "__main__":
|
212 |
import uvicorn
|
213 |
uvicorn.run("server:app", host="0.0.0.0", port=8000, reload=True)
|
test_server.py
CHANGED
@@ -4,6 +4,18 @@ from typing import List, Dict, Any, Optional
|
|
4 |
|
5 |
BASE_URL: str = "http://localhost:8000"
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def test_classify_text() -> None:
|
8 |
# Load emails from CSV file
|
9 |
import csv
|
@@ -23,6 +35,25 @@ def test_classify_text() -> None:
|
|
23 |
print(f"Classification of email '{email['sujet']}' with default categories:")
|
24 |
print(json.dumps(response.json(), indent=2))
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def test_suggest_categories() -> None:
|
28 |
# Load reviews from CSV file
|
@@ -43,7 +74,60 @@ def test_suggest_categories() -> None:
|
|
43 |
print("\nSuggested categories:")
|
44 |
print(json.dumps(response.json(), indent=2))
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
if __name__ == "__main__":
|
47 |
print("Testing FastAPI server endpoints...")
|
|
|
|
|
48 |
test_classify_text()
|
49 |
-
|
|
|
|
|
|
4 |
|
5 |
BASE_URL: str = "http://localhost:8000"
|
6 |
|
7 |
+
def test_health_check() -> None:
|
8 |
+
"""Test the health check endpoint"""
|
9 |
+
response: requests.Response = requests.get(f"{BASE_URL}/health")
|
10 |
+
print("\nHealth check response:")
|
11 |
+
print(json.dumps(response.json(), indent=2))
|
12 |
+
|
13 |
+
def test_model_info() -> None:
|
14 |
+
"""Test the model info endpoint"""
|
15 |
+
response: requests.Response = requests.get(f"{BASE_URL}/model-info")
|
16 |
+
print("\nModel info response:")
|
17 |
+
print(json.dumps(response.json(), indent=2))
|
18 |
+
|
19 |
def test_classify_text() -> None:
|
20 |
# Load emails from CSV file
|
21 |
import csv
|
|
|
35 |
print(f"Classification of email '{email['sujet']}' with default categories:")
|
36 |
print(json.dumps(response.json(), indent=2))
|
37 |
|
38 |
+
def test_classify_batch() -> None:
|
39 |
+
"""Test the batch classification endpoint"""
|
40 |
+
# Load emails from CSV file
|
41 |
+
import csv
|
42 |
+
|
43 |
+
emails: List[Dict[str, str]] = []
|
44 |
+
with open("examples/emails.csv", "r", encoding="utf-8") as file:
|
45 |
+
reader = csv.DictReader(file)
|
46 |
+
for row in reader:
|
47 |
+
emails.append(row)
|
48 |
+
|
49 |
+
# Use the first 5 emails for batch classification
|
50 |
+
texts: List[str] = [email["contenu"] for email in emails[:5]]
|
51 |
+
response: requests.Response = requests.post(
|
52 |
+
f"{BASE_URL}/classify-batch",
|
53 |
+
json={"texts": texts}
|
54 |
+
)
|
55 |
+
print("\nBatch classification results:")
|
56 |
+
print(json.dumps(response.json(), indent=2))
|
57 |
|
58 |
def test_suggest_categories() -> None:
|
59 |
# Load reviews from CSV file
|
|
|
74 |
print("\nSuggested categories:")
|
75 |
print(json.dumps(response.json(), indent=2))
|
76 |
|
77 |
+
def test_validate_classifications() -> None:
|
78 |
+
"""Test the validation endpoint"""
|
79 |
+
# Load emails from CSV file
|
80 |
+
import csv
|
81 |
+
|
82 |
+
emails: List[Dict[str, str]] = []
|
83 |
+
with open("examples/emails.csv", "r", encoding="utf-8") as file:
|
84 |
+
reader = csv.DictReader(file)
|
85 |
+
for row in reader:
|
86 |
+
emails.append(row)
|
87 |
+
|
88 |
+
# Create validation samples from the first 5 emails
|
89 |
+
samples: List[Dict[str, Any]] = []
|
90 |
+
for email in emails[:5]:
|
91 |
+
# First classify the email
|
92 |
+
classify_response: requests.Response = requests.post(
|
93 |
+
f"{BASE_URL}/classify",
|
94 |
+
json={"text": email["contenu"]}
|
95 |
+
)
|
96 |
+
classification: Dict[str, Any] = classify_response.json()
|
97 |
+
|
98 |
+
# Create a validation sample
|
99 |
+
samples.append({
|
100 |
+
"text": email["contenu"],
|
101 |
+
"assigned_category": classification["category"],
|
102 |
+
"confidence": classification["confidence"]
|
103 |
+
})
|
104 |
+
|
105 |
+
# Get current categories
|
106 |
+
categories_response: requests.Response = requests.post(
|
107 |
+
f"{BASE_URL}/suggest-categories",
|
108 |
+
json=[email["contenu"] for email in emails[:5]]
|
109 |
+
)
|
110 |
+
current_categories: List[str] = categories_response.json()["categories"]
|
111 |
+
|
112 |
+
# Send validation request
|
113 |
+
validation_request: Dict[str, Any] = {
|
114 |
+
"samples": samples,
|
115 |
+
"current_categories": current_categories,
|
116 |
+
"text_columns": ["text"]
|
117 |
+
}
|
118 |
+
|
119 |
+
response: requests.Response = requests.post(
|
120 |
+
f"{BASE_URL}/validate",
|
121 |
+
json=validation_request
|
122 |
+
)
|
123 |
+
print("\nValidation results:")
|
124 |
+
print(json.dumps(response.json(), indent=2))
|
125 |
+
|
126 |
if __name__ == "__main__":
|
127 |
print("Testing FastAPI server endpoints...")
|
128 |
+
test_health_check()
|
129 |
+
test_model_info()
|
130 |
test_classify_text()
|
131 |
+
test_classify_batch()
|
132 |
+
test_suggest_categories()
|
133 |
+
test_validate_classifications()
|