simondh's picture
add tpes
535a3a5
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
import random
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional
from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT
from scipy.sparse import csr_matrix
from .base import BaseClassifier
class TFIDFClassifier(BaseClassifier):
"""Classifier using TF-IDF and clustering for fast classification"""
def __init__(self) -> None:
super().__init__()
self.vectorizer: TfidfVectorizer = TfidfVectorizer(
max_features=1000, stop_words="english", ngram_range=(1, 2)
)
self.model: Optional[KMeans] = None
self.feature_names: Optional[np.ndarray] = None
self.categories: Optional[List[str]] = None
self.centroids: Optional[np.ndarray] = None
def classify(self, texts: List[str], categories: Optional[List[str]] = None) -> List[Dict[str, Any]]:
"""Classify texts using TF-IDF and clustering"""
# Vectorize the texts
X: csr_matrix = self.vectorizer.fit_transform(texts)
self.feature_names = self.vectorizer.get_feature_names_out()
# Auto-detect categories if not provided
if not categories:
num_clusters: int = min(5, len(texts)) # Don't create more clusters than texts
self.categories = self._generate_default_categories(texts, num_clusters)
else:
self.categories = categories
num_clusters = len(categories)
# Cluster the texts
self.model = KMeans(n_clusters=num_clusters, random_state=42)
clusters: np.ndarray = self.model.fit_predict(X)
self.centroids = self.model.cluster_centers_
# Calculate distances to centroids for confidence
distances: np.ndarray = self._calculate_distances(X)
# Prepare results
results: List[Dict[str, Any]] = []
for i, text in enumerate(texts):
cluster_idx: int = clusters[i]
# Calculate confidence (inverse of distance, normalized)
confidence: float = self._calculate_confidence(distances[i])
# Create explanation
explanation: str = self._generate_explanation(X[i], cluster_idx)
results.append(
{
"category": self.categories[cluster_idx],
"confidence": confidence,
"explanation": explanation,
}
)
return results
def _calculate_distances(self, X: csr_matrix) -> np.ndarray:
"""Calculate distances from each point to each centroid"""
return np.sqrt(
(
(X.toarray()[:, np.newaxis, :] - self.centroids[np.newaxis, :, :]) ** 2
).sum(axis=2)
)
def _calculate_confidence(self, distances: np.ndarray) -> float:
"""Convert distances to confidence scores (0-100)"""
min_dist: float = np.min(distances)
max_dist: float = np.max(distances)
# Normalize and invert (smaller distance = higher confidence)
if max_dist == min_dist:
return 70 # Default mid-range confidence when all distances are equal
normalized_dist: np.ndarray = (distances - min_dist) / (max_dist - min_dist)
min_normalized: float = np.min(normalized_dist)
# Invert and scale to 50-100 range (TF-IDF is never 100% confident)
confidence: float = 100 - (min_normalized * 50)
return round(confidence, 1)
def _generate_explanation(self, text_vector: csr_matrix, cluster_idx: int) -> str:
"""Generate an explanation for the classification"""
# Get the most important features for this cluster
centroid: np.ndarray = self.centroids[cluster_idx]
# Get indices of top features for this text
text_array: np.ndarray = text_vector.toarray()[0]
top_indices: np.ndarray = text_array.argsort()[-5:][::-1]
# Get the feature names for these indices
top_features: List[str] = [self.feature_names[i] for i in top_indices if text_array[i] > 0]
if not top_features:
return "No significant features identified for this classification."
explanation: str = f"Classification based on key terms: {', '.join(top_features)}"
return explanation