simondh's picture
clean classifier
0f1938f
raw
history blame
5.22 kB
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
import random
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional
from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT
from base import BaseClassifier
class LLMClassifier(BaseClassifier):
"""Classifier using a Large Language Model for more accurate but slower classification"""
def __init__(self, client, model="gpt-3.5-turbo"):
super().__init__()
self.client = client
self.model = model
def classify(
self, texts: List[str], categories: Optional[List[str]] = None
) -> List[Dict[str, Any]]:
"""Classify texts using an LLM with parallel processing"""
if not categories:
# First, use LLM to generate appropriate categories
categories = self._suggest_categories(texts)
# Process texts in parallel
with ThreadPoolExecutor(max_workers=10) as executor:
# Submit all tasks with their original indices
future_to_index = {
executor.submit(self._classify_text, text, categories): idx
for idx, text in enumerate(texts)
}
# Initialize results list with None values
results = [None] * len(texts)
# Collect results as they complete
for future in as_completed(future_to_index):
original_idx = future_to_index[future]
try:
result = future.result()
results[original_idx] = result
except Exception as e:
print(f"Error processing text: {str(e)}")
results[original_idx] = {
"category": categories[0],
"confidence": 50,
"explanation": f"Error during classification: {str(e)}",
}
return results
def _suggest_categories(self, texts: List[str], sample_size: int = 20) -> List[str]:
"""Use LLM to suggest appropriate categories for the dataset"""
# Take a sample of texts to avoid token limitations
if len(texts) > sample_size:
sample_texts = random.sample(texts, sample_size)
else:
sample_texts = texts
prompt = CATEGORY_SUGGESTION_PROMPT.format("\n---\n".join(sample_texts))
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0.2,
max_tokens=100,
)
# Parse response to get categories
categories_text = response.choices[0].message.content.strip()
categories = [cat.strip() for cat in categories_text.split(",")]
return categories
except Exception as e:
# Fallback to default categories on error
print(f"Error suggesting categories: {str(e)}")
return self._generate_default_categories(texts)
def _classify_text(self, text: str, categories: List[str]) -> Dict[str, Any]:
"""Use LLM to classify a single text"""
prompt = TEXT_CLASSIFICATION_PROMPT.format(
categories=", ".join(categories), text=text
)
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
max_tokens=200,
)
# Parse JSON response
response_text = response.choices[0].message.content.strip()
result = json.loads(response_text)
# Ensure all required fields are present
if not all(k in result for k in ["category", "confidence", "explanation"]):
raise ValueError("Missing required fields in LLM response")
# Validate category is in the list
if result["category"] not in categories:
result["category"] = categories[
0
] # Default to first category if invalid
# Validate confidence is a number between 0 and 100
try:
result["confidence"] = float(result["confidence"])
if not 0 <= result["confidence"] <= 100:
result["confidence"] = 50
except:
result["confidence"] = 50
return result
except json.JSONDecodeError:
# Fall back to simple parsing if JSON fails
category = categories[0] # Default
for cat in categories:
if cat.lower() in response_text.lower():
category = cat
break
return {
"category": category,
"confidence": 50,
"explanation": f"Classification based on language model analysis. (Note: Structured response parsing failed)",
}