File size: 6,060 Bytes
d3bdf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173


import logging
import time
import traceback
from sklearn.feature_extraction.text import TfidfVectorizer

from litellm import OpenAI
from classifiers import TFIDFClassifier, LLMClassifier
from utils import load_data, validate_results


def update_api_key(api_key):
    """Update the OpenAI API key"""
    global OPENAI_API_KEY, client

    if not api_key:
        return "API Key cannot be empty"

    OPENAI_API_KEY = api_key

    try:
        client = OpenAI(api_key=api_key)
        # Test the connection with a simple request
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": "test"}],
            max_tokens=5,
        )
        return f"API Key updated and verified successfully"
    except Exception as e:
        error_msg = str(e)
        logging.error(f"API key update failed: {error_msg}")
        return f"Failed to update API Key: {error_msg}"


def process_file(file, text_columns, categories, classifier_type, show_explanations):
    """Process the uploaded file and classify text data"""
    # Initialize result_df and validation_report
    result_df = None
    validation_report = None

    try:
        # Load data from file
        if isinstance(file, str):
            df = load_data(file)
        else:
            df = load_data(file.name)

        if not text_columns:
            return None, "Please select at least one text column"

        # Check if all selected columns exist
        missing_columns = [col for col in text_columns if col not in df.columns]
        if missing_columns:
            return (
                None,
                f"Columns not found in the file: {', '.join(missing_columns)}. Available columns: {', '.join(df.columns)}",
            )

        # Combine text from selected columns
        texts = []
        for _, row in df.iterrows():
            combined_text = " ".join(str(row[col]) for col in text_columns)
            texts.append(combined_text)

        # Parse categories if provided
        category_list = []
        if categories:
            category_list = [cat.strip() for cat in categories.split(",")]

        # Select classifier based on data size and user choice
        num_texts = len(texts)

        # If no specific model is chosen, select the most appropriate one
        if classifier_type == "auto":
            if num_texts <= 500:
                classifier_type = "gpt4"
            elif num_texts <= 1000:
                classifier_type = "gpt35"
            elif num_texts <= 5000:
                classifier_type = "hybrid"
            else:
                classifier_type = "tfidf"

        # Initialize appropriate classifier
        if classifier_type == "tfidf":
            classifier = TFIDFClassifier()
            results = classifier.classify(texts, category_list)
        elif classifier_type in ["gpt35", "gpt4"]:
            if client is None:
                return (
                    None,
                    "Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'.",
                )
            model = "gpt-3.5-turbo" if classifier_type == "gpt35" else "gpt-4"
            classifier = LLMClassifier(client=client, model=model)
            results = classifier.classify(texts, category_list)
        else:  # hybrid
            if client is None:
                return (
                    None,
                    "Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'.",
                )
            # First pass with TF-IDF
            tfidf_classifier = TFIDFClassifier()
            tfidf_results = tfidf_classifier.classify(texts, category_list)

            # Second pass with LLM for low confidence results
            llm_classifier = LLMClassifier(client=client, model="gpt-3.5-turbo")
            results = []
            low_confidence_texts = []
            low_confidence_indices = []

            for i, (text, tfidf_result) in enumerate(zip(texts, tfidf_results)):
                if tfidf_result["confidence"] < 70:  # If confidence is below 70%
                    low_confidence_texts.append(text)
                    low_confidence_indices.append(i)
                    results.append(None)  # Placeholder
                else:
                    results.append(tfidf_result)

            if low_confidence_texts:
                llm_results = llm_classifier.classify(
                    low_confidence_texts, category_list
                )
                for idx, llm_result in zip(low_confidence_indices, llm_results):
                    results[idx] = llm_result

        # Create results dataframe
        result_df = df.copy()
        result_df["Category"] = [r["category"] for r in results]
        result_df["Confidence"] = [r["confidence"] for r in results]

        if show_explanations:
            result_df["Explanation"] = [r["explanation"] for r in results]

        # Validate results using LLM
        validation_report = validate_results(result_df, text_columns, client)

        return result_df, validation_report

    except Exception as e:
        error_traceback = traceback.format_exc()
        return None, f"Error: {str(e)}\n{error_traceback}"


def export_results(df, format_type):
    """Export results to a file and return the file path for download"""
    if df is None:
        return None

    # Create a temporary file
    import tempfile
    import os

    # Create a temporary directory if it doesn't exist
    temp_dir = "temp_exports"
    os.makedirs(temp_dir, exist_ok=True)

    # Generate a unique filename
    timestamp = time.strftime("%Y%m%d-%H%M%S")
    filename = f"classification_results_{timestamp}"

    if format_type == "excel":
        file_path = os.path.join(temp_dir, f"{filename}.xlsx")
        df.to_excel(file_path, index=False)
    else:
        file_path = os.path.join(temp_dir, f"{filename}.csv")
        df.to_csv(file_path, index=False)

    return file_path