WaveTalk / app.py
shukdevdatta123's picture
Update app.py
c1cfa7f verified
import base64
import tempfile
import os
import requests
import gradio as gr
import random
import time
from openai import OpenAI
from requests.exceptions import RequestException, Timeout, ConnectionError
# Available voices for audio generation
VOICES = ["alloy", "ash", "ballad", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer", "verse"]
# Example audio URLs
EXAMPLE_AUDIO_URLS = [
"https://cdn.openai.com/API/docs/audio/alloy.wav",
"https://cdn.openai.com/API/docs/audio/ash.wav",
"https://cdn.openai.com/API/docs/audio/coral.wav",
"https://cdn.openai.com/API/docs/audio/echo.wav",
"https://cdn.openai.com/API/docs/audio/fable.wav",
"https://cdn.openai.com/API/docs/audio/onyx.wav",
"https://cdn.openai.com/API/docs/audio/nova.wav",
"https://cdn.openai.com/API/docs/audio/sage.wav",
"https://cdn.openai.com/API/docs/audio/shimmer.wav"
]
# Supported languages for translation
SUPPORTED_LANGUAGES = [
"Afrikaans", "Arabic", "Armenian", "Azerbaijani", "Belarusian", "Bosnian",
"Bulgarian", "Catalan", "Chinese", "Croatian", "Czech", "Danish", "Dutch",
"English", "Estonian", "Finnish", "French", "Galician", "German", "Greek",
"Hebrew", "Hindi", "Hungarian", "Icelandic", "Indonesian", "Italian", "Japanese",
"Kannada", "Kazakh", "Korean", "Latvian", "Lithuanian", "Macedonian", "Malay",
"Marathi", "Maori", "Nepali", "Norwegian", "Persian", "Polish", "Portuguese",
"Romanian", "Russian", "Serbian", "Slovak", "Slovenian", "Spanish", "Swahili",
"Swedish", "Tagalog", "Tamil", "Thai", "Turkish", "Ukrainian", "Urdu",
"Vietnamese", "Welsh"
]
# Max retries for API calls
MAX_RETRIES = 3
RETRY_DELAY = 2 # seconds
def create_openai_client(api_key):
"""Create an OpenAI client with proper timeout settings"""
return OpenAI(
api_key=api_key,
timeout=60.0, # 60 second timeout
max_retries=3 # Allow 3 retries
)
def process_text_input(api_key, text_prompt, selected_voice):
"""Generate audio response from text input"""
try:
# Initialize OpenAI client with the provided API key
client = create_openai_client(api_key)
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": selected_voice, "format": "wav"},
messages=[
{
"role": "user",
"content": text_prompt
}
]
)
# Save the audio to a temporary file
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(wav_bytes)
# Get the text response directly from the API
text_response = completion.choices[0].message.content
return text_response, temp_path
except ConnectionError as e:
return f"Connection error: {str(e)}. Please check your internet connection and try again.", None
except Timeout as e:
return f"Timeout error: {str(e)}. The request took too long to complete. Please try again.", None
except Exception as e:
return f"Error: {str(e)}", None
def process_audio_input(api_key, audio_path, text_prompt, selected_voice):
"""Process audio input and generate a response"""
try:
if not audio_path:
return "Please upload or record audio first.", None
# Initialize OpenAI client with the provided API key
client = create_openai_client(api_key)
# Read audio file and encode to base64
with open(audio_path, "rb") as audio_file:
audio_data = audio_file.read()
encoded_audio = base64.b64encode(audio_data).decode('utf-8')
# Create message content with both text and audio
message_content = []
if text_prompt:
message_content.append({
"type": "text",
"text": text_prompt
})
message_content.append({
"type": "input_audio",
"input_audio": {
"data": encoded_audio,
"format": "wav"
}
})
# Call OpenAI API
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": selected_voice, "format": "wav"},
messages=[
{
"role": "user",
"content": message_content
}
]
)
# Save the audio response
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(wav_bytes)
# Get the text response
text_response = completion.choices[0].message.content
return text_response, temp_path
except ConnectionError as e:
return f"Connection error: {str(e)}. Please check your internet connection and try again.", None
except Timeout as e:
return f"Timeout error: {str(e)}. The request took too long to complete. Please try again.", None
except Exception as e:
return f"Error: {str(e)}", None
def transcribe_audio(api_key, audio_path):
"""Transcribe an audio file using OpenAI's API"""
try:
if not audio_path:
return "No audio file provided for transcription."
client = create_openai_client(api_key)
# Make sure the file exists and is readable
if not os.path.exists(audio_path):
return "Audio file not found or inaccessible."
# Check file size
file_size = os.path.getsize(audio_path)
if file_size == 0:
return "Audio file is empty."
with open(audio_path, "rb") as audio_file:
for attempt in range(MAX_RETRIES):
try:
transcription = client.audio.transcriptions.create(
model="gpt-4o-transcribe",
file=audio_file
)
return transcription.text
except (ConnectionError, Timeout) as e:
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY)
# Reset file pointer
audio_file.seek(0)
continue
else:
return f"Transcription failed after {MAX_RETRIES} attempts: {str(e)}"
except Exception as e:
return f"Transcription error: {str(e)}"
except Exception as e:
return f"Transcription error: {str(e)}"
def translate_audio(api_key, audio_path):
"""Translate audio to English using OpenAI's Whisper model with improved error handling"""
try:
if not audio_path:
return "No audio file provided for translation."
# Verify file exists and is accessible
if not os.path.exists(audio_path):
return "Audio file not found or inaccessible."
# Check file size
file_size = os.path.getsize(audio_path)
if file_size == 0:
return "Audio file is empty."
client = create_openai_client(api_key)
# Implement retry mechanism
for attempt in range(MAX_RETRIES):
try:
with open(audio_path, "rb") as audio_file:
translation = client.audio.translations.create(
model="whisper-1",
file=audio_file,
timeout=90.0 # Extended timeout for translation
)
return translation.text
except (ConnectionError, Timeout) as e:
if attempt < MAX_RETRIES - 1:
# Wait before retrying
time.sleep(RETRY_DELAY * (attempt + 1)) # Exponential backoff
continue
else:
return f"Translation failed after {MAX_RETRIES} attempts: Connection error. Please check your internet connection and try again."
except Exception as e:
# Handle other exceptions
error_message = str(e)
if "connection" in error_message.lower():
return f"Connection error: {error_message}. Please check your internet connection and try again."
else:
return f"Translation error: {error_message}"
except Exception as e:
return f"Translation error: {str(e)}"
def download_example_audio():
"""Download a random example audio file for testing with improved error handling"""
try:
# Randomly select one of the example audio URLs
url = random.choice(EXAMPLE_AUDIO_URLS)
# Get the voice name from the URL for feedback
voice_name = url.split('/')[-1].split('.')[0]
# Implement retry mechanism
for attempt in range(MAX_RETRIES):
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
# Save to a temporary file
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(response.content)
return temp_path, f"Loaded example voice: {voice_name}"
except (ConnectionError, Timeout) as e:
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY)
continue
else:
return None, f"Failed to download example after {MAX_RETRIES} attempts: {str(e)}"
except Exception as e:
return None, f"Error loading example: {str(e)}"
except Exception as e:
return None, f"Error loading example: {str(e)}"
def use_example_audio():
"""Load random example audio for the interface"""
audio_path, message = download_example_audio()
return audio_path, message
def check_api_key(api_key):
"""Validate if the API key is provided"""
if not api_key or api_key.strip() == "":
return False
return True
# Create Gradio Interface
with gr.Blocks(title="OpenAI Audio Chat App") as app:
gr.Markdown("# OpenAI Audio Chat App")
gr.Markdown("Interact with GPT-4o audio model through text and audio inputs")
# API Key input (used across all tabs)
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API key here",
type="password"
)
with gr.Tab("Text to Audio"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text Prompt",
placeholder="Enter your question or prompt here...",
lines=3
)
text_voice = gr.Dropdown(
choices=VOICES,
value="alloy",
label="Voice"
)
text_submit = gr.Button("Generate Response")
with gr.Column():
text_output = gr.Textbox(label="AI Response (Checks Error)", lines=5)
audio_output = gr.Audio(label="AI Response (Audio)")
transcribed_output = gr.Textbox(label="Transcription of Audio Response", lines=3)
# Function to process text input and then transcribe the resulting audio
def text_input_with_transcription(api_key, text_prompt, voice):
if not check_api_key(api_key):
return "Please enter your OpenAI API key first.", None, "No API key provided."
text_response, audio_path = process_text_input(api_key, text_prompt, voice)
# Get transcription of the generated audio
if audio_path:
transcription = transcribe_audio(api_key, audio_path)
else:
transcription = "No audio generated to transcribe."
return text_response, audio_path, transcription
text_submit.click(
fn=text_input_with_transcription,
inputs=[api_key, text_input, text_voice],
outputs=[text_output, audio_output, transcribed_output]
)
with gr.Tab("Audio Input to Audio Response"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Audio Input",
type="filepath",
sources=["microphone", "upload"]
)
example_btn = gr.Button("Use Random Example Audio")
example_message = gr.Textbox(label="Example Status", interactive=False)
accompanying_text = gr.Textbox(
label="Accompanying Text (Optional)",
placeholder="Add any text context or question about the audio...",
lines=2
)
audio_voice = gr.Dropdown(
choices=VOICES,
value="alloy",
label="Response Voice"
)
audio_submit = gr.Button("Process Audio & Generate Response")
with gr.Column():
audio_text_output = gr.Textbox(label="AI Response (Checks Error)", lines=5)
audio_audio_output = gr.Audio(label="AI Response (Audio)")
audio_transcribed_output = gr.Textbox(label="Transcription of Audio Response", lines=3)
input_transcription = gr.Textbox(label="Transcription of Input Audio", lines=3)
# Function to process audio input, generate response, and provide transcriptions
def audio_input_with_transcription(api_key, audio_path, text_prompt, voice):
if not check_api_key(api_key):
return "Please enter your OpenAI API key first.", None, "No API key provided.", "No API key provided."
# First transcribe the input audio
input_transcription = "N/A"
if audio_path:
input_transcription = transcribe_audio(api_key, audio_path)
else:
return "Please upload or record audio first.", None, "No audio to transcribe.", "No audio provided."
# Process the audio input and get response
text_response, response_audio_path = process_audio_input(api_key, audio_path, text_prompt, voice)
# Transcribe the response audio
response_transcription = "No audio generated to transcribe."
if response_audio_path:
response_transcription = transcribe_audio(api_key, response_audio_path)
return text_response, response_audio_path, response_transcription, input_transcription
audio_submit.click(
fn=audio_input_with_transcription,
inputs=[api_key, audio_input, accompanying_text, audio_voice],
outputs=[audio_text_output, audio_audio_output, audio_transcribed_output, input_transcription]
)
example_btn.click(
fn=use_example_audio,
inputs=[],
outputs=[audio_input, example_message]
)
with gr.Tab("Voice Samples"):
gr.Markdown("## Listen to samples of each voice")
def generate_voice_sample(api_key, voice_type):
if not check_api_key(api_key):
return "Please enter your OpenAI API key first.", None, "No API key provided."
try:
client = create_openai_client(api_key)
# Use retry mechanism
for attempt in range(MAX_RETRIES):
try:
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": voice_type, "format": "wav"},
messages=[
{
"role": "user",
"content": f"This is a sample of the {voice_type} voice. It has its own unique tone and character."
}
]
)
# Save the audio to a temporary file
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(wav_bytes)
# Get transcription
transcription = transcribe_audio(api_key, temp_path)
return f"Sample generated with voice: {voice_type}", temp_path, transcription
except (ConnectionError, Timeout) as e:
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY)
continue
else:
return f"Connection error after {MAX_RETRIES} attempts: {str(e)}. Please check your internet connection.", None, "No sample generated."
except Exception as e:
return f"Error: {str(e)}", None, "No transcription available."
with gr.Row():
sample_voice = gr.Dropdown(
choices=VOICES,
value="alloy",
label="Select Voice Sample"
)
sample_btn = gr.Button("Generate Sample")
with gr.Row():
sample_text = gr.Textbox(label="Status")
sample_audio = gr.Audio(label="Voice Sample")
sample_transcription = gr.Textbox(label="Transcription", lines=3)
sample_btn.click(
fn=generate_voice_sample,
inputs=[api_key, sample_voice],
outputs=[sample_text, sample_audio, sample_transcription]
)
# New tab for audio translation with improved error handling
with gr.Tab("Audio Translation"):
gr.Markdown("## Translate audio from other languages to English")
gr.Markdown("Supports 50+ languages including: Arabic, Chinese, French, German, Japanese, Spanish, and many more.")
with gr.Row():
with gr.Column():
translation_audio_input = gr.Audio(
label="Audio to Translate",
type="filepath",
sources=["microphone", "upload"]
)
translate_btn = gr.Button("Translate to English")
connection_status = gr.Textbox(label="Connection Status", value="Ready", interactive=False)
with gr.Column():
translation_output = gr.Textbox(label="English Translation", lines=5)
original_transcription = gr.Textbox(label="Original Transcription (if available)", lines=5)
def translate_audio_input(api_key, audio_path):
"""Handle the translation of uploaded audio with better connection handling"""
if not check_api_key(api_key):
return "Please enter your OpenAI API key first.", "No API key provided.", "No API key provided."
try:
if not audio_path:
return "Please upload or record audio first.", "No audio to translate.", "Connection ready"
# Update connection status
yield "Processing...", "Preparing audio for translation...", "Connecting to OpenAI API..."
# Get the translation
translation = translate_audio(api_key, audio_path)
# If there's a connection error message in the translation
if "connection error" in translation.lower():
yield translation, "Translation failed due to connection issues.", "Connection failed"
return
# Try to get original transcription (this might be in the original language)
try:
original = transcribe_audio(api_key, audio_path)
if "error" in original.lower():
original = "Could not transcribe original audio due to connection issues."
except Exception:
original = "Could not transcribe original audio."
yield translation, original, "Connection successful"
except ConnectionError as e:
yield f"Connection error: {str(e)}. Please check your internet connection and try again.", "Translation failed.", "Connection failed"
except Timeout as e:
yield f"Timeout error: {str(e)}. The request took too long to complete. Please try again.", "Translation timed out.", "Connection timed out"
except Exception as e:
yield f"Translation error: {str(e)}", "Error occurred during processing.", "Error occurred"
translate_btn.click(
fn=translate_audio_input,
inputs=[api_key, translation_audio_input],
outputs=[translation_output, original_transcription, connection_status]
)
# Show supported languages
with gr.Accordion("Supported Languages", open=False):
gr.Markdown(", ".join(SUPPORTED_LANGUAGES))
# Connection troubleshooting tips
with gr.Accordion("Connection Troubleshooting", open=False):
gr.Markdown("""
### If you experience connection errors:
1. **Check your internet connection** - Ensure you have a stable internet connection
2. **Verify your API key** - Make sure your OpenAI API key is valid and has sufficient credits
3. **Try a smaller audio file** - Large audio files may time out during upload
4. **Wait and retry** - OpenAI servers might be experiencing high traffic
5. **Check file format** - Make sure your audio file is in a supported format (MP3, WAV, etc.)
6. **Try on a different network** - Some networks might block API calls to OpenAI
The app will automatically retry failed connections up to 3 times.
""")
gr.Markdown("""
## Notes:
- You must provide your OpenAI API key in the field above
- The model used is `gpt-4o-audio-preview` for conversation, `gpt-4o-transcribe` for transcriptions, and `whisper-1` for translations
- Audio inputs should be in WAV format for chat and any supported format for translation
- Available voices: alloy, ash, ballad, coral, echo, fable, onyx, nova, sage, shimmer, and verse
- Each audio response is automatically transcribed for verification
- The "Use Random Example Audio" button will load a random sample from OpenAI's demo voices
- The translation feature supports 50+ languages, translating them to English
- If you experience connection errors, the app will automatically retry up to 3 times
""")
if __name__ == "__main__":
app.launch()