import gradio as gr import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import re # Load the model on CPU def load_model(): model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", torch_dtype=torch.float32, device_map="cpu" ) processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct") return model, processor # Function to extract medicine names def extract_medicine_names(image): model, processor = load_model() # Prepare the message with the specific prompt for medicine extraction messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."}, ], } ] # Prepare for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) # Generate output generated_ids = model.generate(**inputs, max_new_tokens=256) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] # Remove <|im_end|> and any other special tokens that might appear in the output output_text = output_text.replace("<|im_end|>", "").strip() return output_text # Create a singleton model and processor to avoid reloading for each request model_instance = None processor_instance = None def get_model_and_processor(): global model_instance, processor_instance if model_instance is None or processor_instance is None: model_instance, processor_instance = load_model() return model_instance, processor_instance # Optimized extraction function that uses the singleton model def extract_medicine_names_optimized(image): if image is None: return "Please upload an image." model, processor = get_model_and_processor() # Prepare the message with the specific prompt for medicine extraction messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."}, ], } ] # Prepare for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) # Generate output generated_ids = model.generate(**inputs, max_new_tokens=256) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] # Remove <|im_end|> and any other special tokens that might appear in the output output_text = output_text.replace("<|im_end|>", "").strip() return output_text # Create Gradio interface with gr.Blocks(title="Medicine Name Extractor") as app: gr.Markdown("# Medicine Name Extractor") gr.Markdown("Upload a medical prescription image to extract the names of medicines.") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Upload Prescription Image") extract_btn = gr.Button("Extract Medicine Names", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Extracted Medicine Names", lines=10) extract_btn.click( fn=extract_medicine_names_optimized, inputs=input_image, outputs=output_text ) gr.Markdown("### Notes") gr.Markdown("- This tool uses the Qwen2-VL-OCR model to extract text from prescription images") gr.Markdown("- For best results, ensure the prescription image is clear and readable") gr.Markdown("- Processing may take some time as the model runs on CPU") # Launch the app if __name__ == "__main__": app.launch()