import logging import torch.nn as nn import torch import torch.nn.functional as F from networks import ops def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1): """5x5 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride, padding=2, groups=groups, bias=False, dilation=dilation) def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, upsample=None, norm_layer=None, large_kernel=False): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self.stride = stride conv = conv5x5 if large_kernel else conv3x3 # Both self.conv1 and self.downsample layers downsample the input when stride != 1 if self.stride > 1: self.conv1 = ops.SpectralNorm(nn.ConvTranspose2d(inplanes, inplanes, kernel_size=4, stride=2, padding=1, bias=False)) else: self.conv1 = ops.SpectralNorm(conv(inplanes, inplanes)) self.bn1 = norm_layer(inplanes) self.activation = nn.LeakyReLU(0.2, inplace=True) self.conv2 = ops.SpectralNorm(conv(inplanes, planes)) self.bn2 = norm_layer(planes) self.upsample = upsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.activation(out) out = self.conv2(out) out = self.bn2(out) if self.upsample is not None: identity = self.upsample(x) out += identity out = self.activation(out) return out class SAM_Decoder_Deep(nn.Module): def __init__(self, nc, layers, block=BasicBlock, norm_layer=None, large_kernel=False, late_downsample=False): super(SAM_Decoder_Deep, self).__init__() self.logger = logging.getLogger("Logger") if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.large_kernel = large_kernel self.kernel_size = 5 if self.large_kernel else 3 #self.inplanes = 512 if layers[0] > 0 else 256 self.inplanes = 256 self.late_downsample = late_downsample self.midplanes = 64 if late_downsample else 32 self.conv1 = ops.SpectralNorm(nn.ConvTranspose2d(self.midplanes, 32, kernel_size=4, stride=2, padding=1, bias=False)) self.bn1 = norm_layer(32) self.leaky_relu = nn.LeakyReLU(0.2, inplace=True) self.upsample = nn.UpsamplingNearest2d(scale_factor=2) self.tanh = nn.Tanh() #self.layer1 = self._make_layer(block, 256, layers[0], stride=2) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 64, layers[2], stride=2) self.layer4 = self._make_layer(block, self.midplanes, layers[3], stride=2) self.refine_OS1 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False), norm_layer(32), self.leaky_relu, nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),) self.refine_OS4 = nn.Sequential( nn.Conv2d(64, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False), norm_layer(32), self.leaky_relu, nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),) self.refine_OS8 = nn.Sequential( nn.Conv2d(128, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False), norm_layer(32), self.leaky_relu, nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),) for m in self.modules(): if isinstance(m, nn.Conv2d): if hasattr(m, "weight_bar"): nn.init.xavier_uniform_(m.weight_bar) else: nn.init.xavier_uniform_(m.weight) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 for m in self.modules(): if isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) self.logger.debug(self) def _make_layer(self, block, planes, blocks, stride=1): if blocks == 0: return nn.Sequential(nn.Identity()) norm_layer = self._norm_layer upsample = None if stride != 1: upsample = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), ops.SpectralNorm(conv1x1(self.inplanes + 4, planes * block.expansion)), norm_layer(planes * block.expansion), ) elif self.inplanes != planes * block.expansion: upsample = nn.Sequential( ops.SpectralNorm(conv1x1(self.inplanes + 4, planes * block.expansion)), norm_layer(planes * block.expansion), ) layers = [block(self.inplanes + 4, planes, stride, upsample, norm_layer, self.large_kernel)] self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, norm_layer=norm_layer, large_kernel=self.large_kernel)) return nn.Sequential(*layers) def forward(self, x_os16, img, mask): ret = {} mask_os16 = F.interpolate(mask, x_os16.shape[2:], mode='bilinear', align_corners=False) img_os16 = F.interpolate(img, x_os16.shape[2:], mode='bilinear', align_corners=False) x = self.layer2(torch.cat((x_os16, img_os16, mask_os16), dim=1)) # N x 128 x 128 x 128 x_os8 = self.refine_OS8(x) mask_os8 = F.interpolate(mask, x.shape[2:], mode='bilinear', align_corners=False) img_os8 = F.interpolate(img, x.shape[2:], mode='bilinear', align_corners=False) x = self.layer3(torch.cat((x, img_os8, mask_os8), dim=1)) # N x 64 x 256 x 256 x_os4 = self.refine_OS4(x) mask_os4 = F.interpolate(mask, x.shape[2:], mode='bilinear', align_corners=False) img_os4 = F.interpolate(img, x.shape[2:], mode='bilinear', align_corners=False) x = self.layer4(torch.cat((x, img_os4, mask_os4), dim=1)) # N x 32 x 512 x 512 x = self.conv1(x) x = self.bn1(x) x = self.leaky_relu(x) # N x 32 x 1024 x 1024 x_os1 = self.refine_OS1(x) # N x_os4 = F.interpolate(x_os4, scale_factor=4.0, mode='bilinear', align_corners=False) x_os8 = F.interpolate(x_os8, scale_factor=8.0, mode='bilinear', align_corners=False) x_os1 = (torch.tanh(x_os1) + 1.0) / 2.0 x_os4 = (torch.tanh(x_os4) + 1.0) / 2.0 x_os8 = (torch.tanh(x_os8) + 1.0) / 2.0 mask_os1 = F.interpolate(mask, x_os1.shape[2:], mode='bilinear', align_corners=False) ret['alpha_os1'] = x_os1 ret['alpha_os4'] = x_os4 ret['alpha_os8'] = x_os8 ret['mask'] = mask_os1 return ret