sg7849 commited on
Commit
6d30351
·
verified ·
1 Parent(s): f72c5c4

app, finetuned_clip.pt, retrieval and requirement files

Browse files
Files changed (4) hide show
  1. app.py +7 -4
  2. finetuned_clip.pt +3 -0
  3. hf_retrieval.py +140 -0
  4. requirements.txt +8 -0
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- from retrieval import *
3
  import requests
4
 
5
  def ask_llama_about_chunks(question):
@@ -25,10 +25,13 @@ CONTEXT:
25
  ANSWER:"""
26
 
27
  response = requests.post(
28
- "http://host.docker.internal:11434/api/generate",
29
- json={"model": "llama3", "prompt": prompt, "stream": False}
 
30
  )
31
- answer = response.json()["response"].strip()
 
 
32
 
33
  try:
34
  best_chunk_index = int(answer) - 1
 
1
  import gradio as gr
2
+ from hf_retrieval import *
3
  import requests
4
 
5
  def ask_llama_about_chunks(question):
 
25
  ANSWER:"""
26
 
27
  response = requests.post(
28
+ "https://api-inference.huggingface.co/models/meta-llama/Llama-3-8b-chat-hf",
29
+ headers={"Authorization": f"Bearer {os.environ['HF_API_TOKEN']}"},
30
+ json={"inputs": prompt}
31
  )
32
+
33
+ data = response.json()
34
+ answer = data.get("generated_text", "").strip()
35
 
36
  try:
37
  best_chunk_index = int(answer) - 1
finetuned_clip.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4919bea11821485be97e47096777e8a596c64b895eb2c97ee6d0876889ca39a
3
+ size 605227124
hf_retrieval.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import open_clip
2
+ import torch
3
+ import tempfile
4
+ import subprocess
5
+ import os
6
+ from datetime import datetime
7
+ from collections import defaultdict
8
+ from datasets import load_dataset
9
+ from qdrant_client import QdrantClient
10
+
11
+ tokenizer = open_clip.get_tokenizer("ViT-B-32")
12
+
13
+ model, _, preprocess = open_clip.create_model_and_transforms("ViT-B-32", pretrained=None)
14
+ checkpoint_path = "finetuned_clip.pt"
15
+ model.load_state_dict(torch.load(checkpoint_path, map_location="cpu"))
16
+ model.eval()
17
+
18
+ qdrant = QdrantClient(url=os.environ["QDRANT_CLOUD_URL"],
19
+ api_key=["QDRANT_API_KEY"])
20
+ collection_name = "video_chunks"
21
+
22
+
23
+ def timestamp_to_seconds(ts):
24
+ h, m, s = ts.split(":")
25
+ return int(h) * 3600 + int(m) * 60 + float(s)
26
+
27
+
28
+ def seconds_to_timestamp(seconds):
29
+ h = int(seconds // 3600)
30
+ m = int((seconds % 3600) // 60)
31
+ s = seconds % 60
32
+ return f"{h:02}:{m:02}:{s:06.3f}"
33
+
34
+
35
+ def smart_merge_subtitles(a, b):
36
+ if b in a:
37
+ return a
38
+ if a in b:
39
+ return b
40
+
41
+ for i in range(min(len(a), len(b)), 0, -1):
42
+ if a.endswith(b[:i]):
43
+ return a + b[i:]
44
+ if b.endswith(a[:i]):
45
+ return b + a[i:]
46
+ return a + " " + b
47
+
48
+
49
+ def merge_chunks(chunks):
50
+ grouped = defaultdict(list)
51
+
52
+ for chunk in chunks:
53
+ payload = chunk.payload
54
+ grouped[payload["video_id"]].append({
55
+ "start": timestamp_to_seconds(payload["start_time"]),
56
+ "end": timestamp_to_seconds(payload["end_time"]),
57
+ "subtitle": payload["subtitle"].strip(),
58
+ "merged": False
59
+ })
60
+
61
+ merged_chunks = []
62
+
63
+ for video_id, video_chunks in grouped.items():
64
+ for i, chunk in enumerate(video_chunks):
65
+ if chunk["merged"]:
66
+ continue
67
+
68
+ merged_chunk = chunk.copy()
69
+ chunk["merged"] = True
70
+
71
+ for j, other in enumerate(video_chunks):
72
+ if i == j or other["merged"]:
73
+ continue
74
+
75
+ if not (merged_chunk["end"] < other["start"] or other["end"] < merged_chunk["start"]):
76
+ merged_chunk["start"] = min(merged_chunk["start"], other["start"])
77
+ merged_chunk["end"] = max(merged_chunk["end"], other["end"])
78
+ merged_chunk["subtitle"] = smart_merge_subtitles(merged_chunk["subtitle"], other["subtitle"])
79
+ other["merged"] = True
80
+
81
+ merged_chunks.append({
82
+ "video_id": video_id,
83
+ "start_time": seconds_to_timestamp(merged_chunk["start"]),
84
+ "end_time": seconds_to_timestamp(merged_chunk["end"]),
85
+ "subtitle": merged_chunk["subtitle"]
86
+ })
87
+
88
+ return merged_chunks
89
+
90
+
91
+ def get_video_segment(video_id, start_time, end_time):
92
+ dataset = load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)
93
+ for sample in dataset:
94
+ if sample["__key__"] == video_id:
95
+ break
96
+
97
+ tmp_dir = tempfile.gettempdir()
98
+ timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f")
99
+
100
+ full_path = os.path.join(tmp_dir, f"full_{timestamp}.mp4")
101
+ trimmed_path = os.path.join(tmp_dir, f"clip_{timestamp}.mp4")
102
+
103
+ with open(full_path, "wb") as f:
104
+ f.write(sample["mp4"])
105
+
106
+ cmd = [
107
+ "ffmpeg", "-ss", start_time, "-to", end_time,
108
+ "-i", full_path,
109
+ "-c:v", "copy", "-c:a", "copy", "-y",
110
+ trimmed_path
111
+ ]
112
+
113
+ result = subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
114
+ os.remove(full_path)
115
+
116
+ if result.returncode != 0:
117
+ print("FFmpeg failed")
118
+ return None
119
+
120
+ return trimmed_path
121
+
122
+
123
+ def retrieval(question):
124
+ text_tokens = tokenizer([question])
125
+
126
+ with torch.no_grad():
127
+ query_vec = model.encode_text(text_tokens).squeeze(0).cpu().numpy()
128
+
129
+ search_result = qdrant.search(
130
+ collection_name=collection_name,
131
+ query_vector=query_vec.tolist(),
132
+ limit=40
133
+ )
134
+
135
+ filtered_results = [
136
+ res for res in search_result
137
+ if len(res.payload.get("subtitle", "")) >= 35
138
+ ]
139
+
140
+ return filtered_results[:10]
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ torch
3
+ open_clip_torch
4
+ qdrant-client
5
+ requests
6
+ scikit-learn
7
+ datasets
8
+ ffmpeg-python