Spaces:
Running
Running
File size: 4,626 Bytes
53f3ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
from pathlib import Path
import torch
from langchain_community.document_loaders import (
CSVLoader,
PDFMinerLoader,
PyPDFLoader,
TextLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
YoutubeLoader,
DirectoryLoader,
)
# langchain classes for extracting text from various sources
LOADER_CLASSES = {
'.csv': CSVLoader,
'.doc': UnstructuredWordDocumentLoader,
'.docx': UnstructuredWordDocumentLoader,
'.html': UnstructuredHTMLLoader,
'.md': UnstructuredMarkdownLoader,
'.pdf': PDFMinerLoader,
'.ppt': UnstructuredPowerPointLoader,
'.pptx': UnstructuredPowerPointLoader,
'.txt': TextLoader,
'web': WebBaseLoader,
'directory': DirectoryLoader,
'youtube': YoutubeLoader,
}
# languages for youtube subtitles
SUBTITLES_LANGUAGES = ['ru', 'en']
# prom template subject to context
CONTEXT_TEMPLATE = '''Ответь на вопрос при условии контекста.
Контекст:
{context}
Вопрос:
{user_message}
Ответ:'''
# paths to LLM and embeddings models
LLM_MODELS_PATH = Path('models')
EMBED_MODELS_PATH = Path('embed_models')
LLM_MODELS_PATH.mkdir(exist_ok=True)
EMBED_MODELS_PATH.mkdir(exist_ok=True)
# dictionary for text generation config
GENERATE_KWARGS = dict(
temperature=0.2,
top_p=0.95,
top_k=40,
repeat_penalty=1.0,
)
# llama-cpp-python model params
LLAMA_MODEL_KWARGS = dict(
n_gpu_layers=-1,
verbose=True,
n_ctx=4096, # context size, 2048, 4096, ...
)
# models devices
# EMBED_MODEL_DEVICE = 'cpu'
EMBED_MODEL_DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
LLM_MODEL_DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
if LLM_MODEL_DEVICE == 'cpu':
LLAMA_MODEL_KWARGS['n_gpu_layers'] = 0
# available when running the LLM application models in GGUF format
LLM_MODEL_REPOS = [
# https://huggingface.co./bartowski/google_gemma-3-1b-it-GGUF
'bartowski/google_gemma-3-1b-it-GGUF',
# https://huggingface.co./bartowski/Qwen2.5-1.5B-Instruct-GGUF
'bartowski/Qwen2.5-1.5B-Instruct-GGUF',
# https://huggingface.co./bartowski/Qwen2.5-3B-Instruct-GGUF
'bartowski/Qwen2.5-3B-Instruct-GGUF',
# https://huggingface.co./bartowski/google_gemma-3-4b-it-GGUF
'bartowski/google_gemma-3-4b-it-GGUF',
# https://huggingface.co./bartowski/google_gemma-3-1b-it-GGUF
'https://huggingface.co./bartowski/google_gemma-3-1b-it-GGUF',
# https://huggingface.co./bartowski/gemma-2-2b-it-GGUF
'bartowski/gemma-2-2b-it-GGUF',
# https://huggingface.co./bartowski/Qwen2.5-1.5B-Instruct-GGUF
'bartowski/Qwen2.5-1.5B-Instruct-GGUF',
]
# GGUF filename to LLM_MODEL_REPOS[0]
# START_LLM_MODEL_FILE = 'Qwen2.5-1.5B-Instruct-Q8_0.gguf'
START_LLM_MODEL_FILE = 'google_gemma-3-1b-it-Q8_0.gguf'
# Embedding models available at application startup
EMBED_MODEL_REPOS = [
# https://huggingface.co./Alibaba-NLP/gte-multilingual-base # 611 MB
'Alibaba-NLP/gte-multilingual-base',
# https://huggingface.co./intfloat/multilingual-e5-small # 471 MB
'intfloat/multilingual-e5-small',
# https://huggingface.co./sergeyzh/rubert-tiny-turbo # 117 MB
'sergeyzh/rubert-tiny-turbo',
# https://huggingface.co./sergeyzh/BERTA # 513 MB
'sergeyzh/BERTA',
# https://huggingface.co./cointegrated/rubert-tiny2 # 118 MB
'cointegrated/rubert-tiny2',
# https://huggingface.co./cointegrated/LaBSE-en-ru # 516 MB
'cointegrated/LaBSE-en-ru',
# https://huggingface.co./sergeyzh/LaBSE-ru-turbo # 513 MB
'sergeyzh/LaBSE-ru-turbo',
# https://huggingface.co./intfloat/multilingual-e5-large # 2.24 GB
'intfloat/multilingual-e5-large',
# https://huggingface.co./intfloat/multilingual-e5-base # 1.11 GB
'intfloat/multilingual-e5-base',
# https://huggingface.co./intfloat/multilingual-e5-large-instruct # 1.12 GB
'intfloat/multilingual-e5-large-instruct',
# https://huggingface.co./sentence-transformers/all-mpnet-base-v2 # 438 MB
'sentence-transformers/all-mpnet-base-v2',
# https://huggingface.co./sentence-transformers/paraphrase-multilingual-mpnet-base-v2 # 1.11 GB
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
# https://huggingface.co./ai-forever?search_models=ruElectra # 356 MB
'ai-forever/ruElectra-medium',
# https://huggingface.co./ai-forever/sbert_large_nlu_ru # 1.71 GB
'ai-forever/sbert_large_nlu_ru',
]
|