File size: 4,626 Bytes
53f3ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from pathlib import Path

import torch
from langchain_community.document_loaders import (
    CSVLoader,
    PDFMinerLoader,
    PyPDFLoader,
    TextLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader,
    WebBaseLoader,
    YoutubeLoader,
    DirectoryLoader,
)


# langchain classes for extracting text from various sources
LOADER_CLASSES = {
    '.csv': CSVLoader,
    '.doc': UnstructuredWordDocumentLoader,
    '.docx': UnstructuredWordDocumentLoader,
    '.html': UnstructuredHTMLLoader,
    '.md': UnstructuredMarkdownLoader,
    '.pdf': PDFMinerLoader,
    '.ppt': UnstructuredPowerPointLoader,
    '.pptx': UnstructuredPowerPointLoader,
    '.txt': TextLoader,
    'web': WebBaseLoader,
    'directory': DirectoryLoader,
    'youtube': YoutubeLoader,
}

# languages ​​for youtube subtitles
SUBTITLES_LANGUAGES = ['ru', 'en']

# prom template subject to context
CONTEXT_TEMPLATE = '''Ответь на вопрос при условии контекста.



Контекст:

{context}



Вопрос:

{user_message}



Ответ:'''

# paths to LLM and embeddings models 
LLM_MODELS_PATH = Path('models')
EMBED_MODELS_PATH = Path('embed_models')
LLM_MODELS_PATH.mkdir(exist_ok=True)
EMBED_MODELS_PATH.mkdir(exist_ok=True)

# dictionary for text generation config
GENERATE_KWARGS = dict(
    temperature=0.2,
    top_p=0.95,
    top_k=40,
    repeat_penalty=1.0,
    )

# llama-cpp-python model params
LLAMA_MODEL_KWARGS = dict(
    n_gpu_layers=-1,
    verbose=True,
    n_ctx=4096,  # context size, 2048, 4096, ...
)

# models devices
# EMBED_MODEL_DEVICE = 'cpu'
EMBED_MODEL_DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
LLM_MODEL_DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

if LLM_MODEL_DEVICE == 'cpu':
    LLAMA_MODEL_KWARGS['n_gpu_layers'] = 0

# available when running the LLM application models in GGUF format
LLM_MODEL_REPOS = [
    # https://huggingface.co./bartowski/google_gemma-3-1b-it-GGUF
    'bartowski/google_gemma-3-1b-it-GGUF',
    # https://huggingface.co./bartowski/Qwen2.5-1.5B-Instruct-GGUF
    'bartowski/Qwen2.5-1.5B-Instruct-GGUF',
    # https://huggingface.co./bartowski/Qwen2.5-3B-Instruct-GGUF
    'bartowski/Qwen2.5-3B-Instruct-GGUF',
    # https://huggingface.co./bartowski/google_gemma-3-4b-it-GGUF
    'bartowski/google_gemma-3-4b-it-GGUF',
    # https://huggingface.co./bartowski/google_gemma-3-1b-it-GGUF
    'https://huggingface.co./bartowski/google_gemma-3-1b-it-GGUF',
    # https://huggingface.co./bartowski/gemma-2-2b-it-GGUF
    'bartowski/gemma-2-2b-it-GGUF',
    # https://huggingface.co./bartowski/Qwen2.5-1.5B-Instruct-GGUF
    'bartowski/Qwen2.5-1.5B-Instruct-GGUF',
]

# GGUF filename to LLM_MODEL_REPOS[0]
# START_LLM_MODEL_FILE = 'Qwen2.5-1.5B-Instruct-Q8_0.gguf'
START_LLM_MODEL_FILE = 'google_gemma-3-1b-it-Q8_0.gguf'

# Embedding models available at application startup
EMBED_MODEL_REPOS = [
    # https://huggingface.co./Alibaba-NLP/gte-multilingual-base  # 611 MB
    'Alibaba-NLP/gte-multilingual-base',
    # https://huggingface.co./intfloat/multilingual-e5-small  # 471 MB
    'intfloat/multilingual-e5-small',
    # https://huggingface.co./sergeyzh/rubert-tiny-turbo  # 117 MB
    'sergeyzh/rubert-tiny-turbo',
    # https://huggingface.co./sergeyzh/BERTA  # 513 MB
    'sergeyzh/BERTA',
    # https://huggingface.co./cointegrated/rubert-tiny2  # 118 MB
    'cointegrated/rubert-tiny2',
    # https://huggingface.co./cointegrated/LaBSE-en-ru  # 516 MB
    'cointegrated/LaBSE-en-ru',
    # https://huggingface.co./sergeyzh/LaBSE-ru-turbo  # 513 MB
    'sergeyzh/LaBSE-ru-turbo',
    # https://huggingface.co./intfloat/multilingual-e5-large  # 2.24 GB
    'intfloat/multilingual-e5-large',
    # https://huggingface.co./intfloat/multilingual-e5-base  # 1.11 GB
    'intfloat/multilingual-e5-base',
    # https://huggingface.co./intfloat/multilingual-e5-large-instruct  # 1.12 GB
    'intfloat/multilingual-e5-large-instruct',
    # https://huggingface.co./sentence-transformers/all-mpnet-base-v2  # 438 MB
    'sentence-transformers/all-mpnet-base-v2',
    # https://huggingface.co./sentence-transformers/paraphrase-multilingual-mpnet-base-v2  # 1.11 GB
    'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
    # https://huggingface.co./ai-forever?search_models=ruElectra  # 356 MB
    'ai-forever/ruElectra-medium',
    # https://huggingface.co./ai-forever/sbert_large_nlu_ru  # 1.71 GB
    'ai-forever/sbert_large_nlu_ru',
]