Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel | |
from diffusers.utils import export_to_gif, load_image | |
from transformers import pipeline | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# 한글-영어 번역 모델 로드 | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
def translate_korean_to_english(text): | |
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text): | |
translated = translator(text)[0]['translation_text'] | |
return translated | |
return text | |
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale): | |
prompt = translate_korean_to_english(prompt) | |
negative_prompt = translate_korean_to_english(negative_prompt) | |
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device) | |
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device) | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device) | |
pipe = AnimateDiffPipeline.from_pretrained( | |
"SG161222/Realistic_Vision_V6.0_B1_noVAE", | |
motion_adapter=motion_adapter, | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
).to(device) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True) | |
image_files = [ | |
"https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png", | |
"https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png", | |
"https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png" | |
] | |
conditioning_frames = [load_image(img_file) for img_file in image_files] | |
conditioning_frame_indices = eval(conditioning_frame_indices) | |
controlnet_conditioning_scale = float(controlnet_conditioning_scale) | |
video = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_steps, | |
conditioning_frames=conditioning_frames, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
controlnet_frame_indices=conditioning_frame_indices, | |
generator=torch.Generator().manual_seed(1337), | |
).frames[0] | |
export_to_gif(video, "output.gif") | |
return "output.gif" | |
demo = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Textbox(label="Prompt (한글 또는 영어)", value="사이버펑크 도시의 공중 전망, 밤, 네온 불빛, 걸작, 고품질"), | |
gr.Textbox(label="Negative Prompt (한글 또는 영어)", value="저품질, 최악의 품질, 레터박스"), | |
gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=100), | |
gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"), | |
gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0) | |
], | |
outputs=gr.Image(label="Generated Video"), | |
title="AnimateDiffSparseControlNetPipeline을 사용한 비디오 생성", | |
description="AnimateDiffSparseControlNetPipeline을 사용하여 비디오를 생성합니다. 한글 또는 영어로 프롬프트를 입력할 수 있습니다." | |
) | |
demo.launch() |