Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
TextIteratorStreamer,
|
8 |
+
pipeline,
|
9 |
+
)
|
10 |
+
from threading import Thread
|
11 |
+
|
12 |
+
# The huggingface model id for Microsoft's phi-2 model
|
13 |
+
checkpoint = "microsoft/phi-2"
|
14 |
+
|
15 |
+
# Download and load model and tokenizer
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
checkpoint, torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True
|
19 |
+
)
|
20 |
+
|
21 |
+
# Text generation pipeline
|
22 |
+
phi2 = pipeline(
|
23 |
+
"text-generation",
|
24 |
+
tokenizer=tokenizer,
|
25 |
+
model=model,
|
26 |
+
pad_token_id=tokenizer.eos_token_id,
|
27 |
+
eos_token_id=tokenizer.eos_token_id,
|
28 |
+
device_map="cpu",
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
# Function that accepts a prompt and generates text using the phi2 pipeline
|
33 |
+
def generate(message, chat_history, max_new_tokens):
|
34 |
+
instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'."
|
35 |
+
final_prompt = f"Instruction: {instruction}\n"
|
36 |
+
|
37 |
+
for sent, received in chat_history:
|
38 |
+
final_prompt += "User: " + sent + "\n"
|
39 |
+
final_prompt += "Assistant: " + received + "\n"
|
40 |
+
|
41 |
+
final_prompt += "User: " + message + "\n"
|
42 |
+
final_prompt += "Output:"
|
43 |
+
|
44 |
+
if (
|
45 |
+
len(tokenizer.tokenize(final_prompt))
|
46 |
+
>= tokenizer.model_max_length - max_new_tokens
|
47 |
+
):
|
48 |
+
final_prompt = "Instruction: Say 'Input exceeded context size, please clear the chat history and retry!' Output:"
|
49 |
+
|
50 |
+
# Streamer
|
51 |
+
streamer = TextIteratorStreamer(
|
52 |
+
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0
|
53 |
+
)
|
54 |
+
thread = Thread(
|
55 |
+
target=phi2,
|
56 |
+
kwargs={
|
57 |
+
"text_inputs": final_prompt,
|
58 |
+
"max_new_tokens": max_new_tokens,
|
59 |
+
"streamer": streamer,
|
60 |
+
},
|
61 |
+
)
|
62 |
+
thread.start()
|
63 |
+
|
64 |
+
generated_text = ""
|
65 |
+
for word in streamer:
|
66 |
+
generated_text += word
|
67 |
+
response = generated_text.strip()
|
68 |
+
|
69 |
+
if "User:" in response:
|
70 |
+
response = response.split("User:")[0].strip()
|
71 |
+
|
72 |
+
if "Assistant:" in response:
|
73 |
+
response = response.split("Assistant:")[1].strip()
|
74 |
+
|
75 |
+
yield response
|
76 |
+
|
77 |
+
|
78 |
+
# Chat interface with gradio
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
# Phi-2 Chatbot Demo
|
83 |
+
This chatbot was created using Microsoft's 2.7 billion parameter [phi-2](https://huggingface.co/microsoft/phi-2) Transformer model.
|
84 |
+
|
85 |
+
In order to reduce the response time on this hardware, `max_new_tokens` has been set to `21` in the text generation pipeline. With this default configuration, it takes approximately `60 seconds` for the response to start being generated, and streamed one word at a time. Use the slider below to increase or decrease the length of the generated text.
|
86 |
+
"""
|
87 |
+
)
|
88 |
+
|
89 |
+
tokens_slider = gr.Slider(
|
90 |
+
8,
|
91 |
+
128,
|
92 |
+
value=21,
|
93 |
+
label="Maximum new tokens",
|
94 |
+
info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.",
|
95 |
+
)
|
96 |
+
|
97 |
+
chatbot = gr.ChatInterface(
|
98 |
+
fn=generate,
|
99 |
+
additional_inputs=[tokens_slider],
|
100 |
+
stop_btn=None,
|
101 |
+
examples=[["Who is Leonhard Euler?"]],
|
102 |
+
)
|
103 |
+
|
104 |
+
demo.queue().launch(share=True)
|