Update app.py
Browse files
app.py
CHANGED
@@ -1,77 +1,25 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import
|
4 |
-
import cv2
|
5 |
-
import numpy as np
|
6 |
-
from mmdet.apis import DetInferencer
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
return "Model loaded."
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
if inferencer is None:
|
26 |
-
return "Please load a model first.", None
|
27 |
-
temp_dir = tempfile.mkdtemp()
|
28 |
-
cap = cv2.VideoCapture(video)
|
29 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
30 |
-
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
31 |
-
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
32 |
-
out_path = os.path.join(temp_dir, "result.mp4")
|
33 |
-
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
34 |
-
out = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
|
35 |
-
while True:
|
36 |
-
ret, frame = cap.read()
|
37 |
-
if not ret:
|
38 |
-
break
|
39 |
-
result = inferencer(frame)
|
40 |
-
vis = result["visualization"]
|
41 |
-
if isinstance(vis, list):
|
42 |
-
vis = vis[0]
|
43 |
-
out.write(vis[:,:,::-1])
|
44 |
-
cap.release()
|
45 |
-
out.release()
|
46 |
-
return "", out_path
|
47 |
-
|
48 |
-
def ui():
|
49 |
-
with gr.Blocks() as demo:
|
50 |
-
gr.Markdown("# SpecDETR Demo: Image and Video Detection\nUpload your config (.py) and checkpoint (.pth) to start.")
|
51 |
-
with gr.Row():
|
52 |
-
config = gr.File(label="Config File (.py)")
|
53 |
-
checkpoint = gr.File(label="Checkpoint (.pth)")
|
54 |
-
load_btn = gr.Button("Load Model")
|
55 |
-
load_status = gr.Textbox(label="Status", interactive=False)
|
56 |
-
load_btn.click(load_model, inputs=[config, checkpoint], outputs=load_status)
|
57 |
-
with gr.Tab("Image"):
|
58 |
-
img_input = gr.Image(type="numpy")
|
59 |
-
img_output = gr.Image()
|
60 |
-
img_btn = gr.Button("Detect on Image")
|
61 |
-
img_status = gr.Textbox(label="Status", interactive=False)
|
62 |
-
img_btn.click(infer_image, inputs=img_input, outputs=[img_status, img_output])
|
63 |
-
with gr.Tab("Video"):
|
64 |
-
vid_input = gr.Video()
|
65 |
-
vid_output = gr.Video()
|
66 |
-
vid_btn = gr.Button("Detect on Video")
|
67 |
-
vid_status = gr.Textbox(label="Status", interactive=False)
|
68 |
-
vid_btn.click(infer_video, inputs=vid_input, outputs=[vid_status, vid_output])
|
69 |
-
return demo
|
70 |
-
|
71 |
-
demo = ui()
|
72 |
-
|
73 |
-
def main():
|
74 |
-
demo.launch()
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
-
|
|
|
1 |
+
import sys, os
|
2 |
+
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
+
from inference_custom import main as samwise_infer
|
|
|
|
|
|
|
6 |
|
7 |
+
def inference(video, prompt):
|
8 |
+
output_path = "output_segmented.mp4"
|
9 |
+
# 'video' is a file path string provided by Gradio
|
10 |
+
samwise_infer(video, prompt, output_path, "models/samwise.pth")
|
11 |
+
return output_path
|
|
|
12 |
|
13 |
+
demo = gr.Interface(
|
14 |
+
fn=inference,
|
15 |
+
inputs=[
|
16 |
+
gr.Video(label="Upload Video"),
|
17 |
+
gr.Textbox(label="Text Prompt", placeholder="Describe what to segment")
|
18 |
+
],
|
19 |
+
outputs=gr.Video(label="Segmented Output"),
|
20 |
+
title="SAMWISE Video Segmentation",
|
21 |
+
description="Upload a video and enter a prompt to segment objects with SAMWISE."
|
22 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
if __name__ == "__main__":
|
25 |
+
demo.launch()
|