import gradio as gr import subprocess import threading import time from huggingface_hub import InferenceClient # Définir la fonction `respond` avant de l'utiliser client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Fonction pour lancer train.py en arrière-plan def train_model(): process = subprocess.Popen(["python", "train.py"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() return stdout.decode() + "\n" + stderr.decode() # Retourne les logs d'entraînement # Lancer l'entraînement en arrière-plan threading.Thread(target=train_model, daemon=True).start() # ✅ Ajout d'un délai pour éviter les conflits au démarrage time.sleep(3) # Interface Gradio demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()