Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
import torch
|
5 |
+
import pandas as pd
|
6 |
+
import pytesseract
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
# Set Tesseract command (only works if Tesseract is already installed on the hosting server)
|
10 |
+
pytesseract.pytesseract_cmd = r'/usr/bin/tesseract'
|
11 |
+
|
12 |
+
# Initialize the model and processor
|
13 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
14 |
+
"Qwen/Qwen2-VL-2B-Instruct-AWQ",
|
15 |
+
torch_dtype="auto"
|
16 |
+
)
|
17 |
+
model.to("cpu")
|
18 |
+
|
19 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ")
|
20 |
+
|
21 |
+
|
22 |
+
# Preprocessing image for OCR
|
23 |
+
def preprocess_image(image_path):
|
24 |
+
image = cv2.imread(image_path)
|
25 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
26 |
+
_, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
27 |
+
return binary
|
28 |
+
|
29 |
+
|
30 |
+
# OCR-based text extraction
|
31 |
+
def ocr_extract_text(image_path):
|
32 |
+
preprocessed_image = preprocess_image(image_path)
|
33 |
+
return pytesseract.image_to_string(preprocessed_image)
|
34 |
+
|
35 |
+
|
36 |
+
# Model-based image processing
|
37 |
+
def process_image(image_path):
|
38 |
+
try:
|
39 |
+
messages = [{
|
40 |
+
"role": "user",
|
41 |
+
"content": [
|
42 |
+
{"type": "image", "image": image_path},
|
43 |
+
{"type": "text", "text": (
|
44 |
+
"Extract the following details from the invoice:\n"
|
45 |
+
"- 'invoice_number'\n"
|
46 |
+
"- 'date'\n"
|
47 |
+
"- 'place'\n"
|
48 |
+
"- 'amount' (monetary value in the relevant currency)\n"
|
49 |
+
"- 'category' (based on the invoice type)"
|
50 |
+
)}
|
51 |
+
]
|
52 |
+
}]
|
53 |
+
|
54 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
55 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
56 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
|
57 |
+
inputs = inputs.to(model.device)
|
58 |
+
|
59 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
60 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
61 |
+
|
62 |
+
return parse_details(output_text[0])
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Model failed, falling back to OCR: {e}")
|
66 |
+
ocr_text = ocr_extract_text(image_path)
|
67 |
+
return parse_details(ocr_text)
|
68 |
+
|
69 |
+
|
70 |
+
# Parsing details from text
|
71 |
+
def parse_details(details):
|
72 |
+
parsed_data = {
|
73 |
+
"Invoice Number": None,
|
74 |
+
"Date": None,
|
75 |
+
"Place": None,
|
76 |
+
"Amount": None,
|
77 |
+
"Category": None
|
78 |
+
}
|
79 |
+
|
80 |
+
lines = details.split("\n")
|
81 |
+
for line in lines:
|
82 |
+
lower_line = line.lower()
|
83 |
+
if "invoice" in lower_line:
|
84 |
+
parsed_data["Invoice Number"] = line.split(":")[-1].strip()
|
85 |
+
elif "date" in lower_line:
|
86 |
+
parsed_data["Date"] = line.split(":")[-1].strip()
|
87 |
+
elif "place" in lower_line:
|
88 |
+
parsed_data["Place"] = line.split(":")[-1].strip()
|
89 |
+
elif any(keyword in lower_line for keyword in ["total", "amount", "cost"]):
|
90 |
+
parsed_data["Amount"] = line.split(":")[-1].strip()
|
91 |
+
else:
|
92 |
+
parsed_data["Category"] = "General"
|
93 |
+
|
94 |
+
return parsed_data
|
95 |
+
|
96 |
+
|
97 |
+
# Gradio Interface
|
98 |
+
def gradio_interface(image_files):
|
99 |
+
results = []
|
100 |
+
for image_file in image_files:
|
101 |
+
details = process_image(image_file.name)
|
102 |
+
results.append(details)
|
103 |
+
|
104 |
+
df = pd.DataFrame(results)
|
105 |
+
return df
|
106 |
+
|
107 |
+
|
108 |
+
# Launch Gradio App
|
109 |
+
grpc_interface = gr.Interface(
|
110 |
+
fn=gradio_interface,
|
111 |
+
inputs=gr.File(label="Upload Invoice Images", file_types=["image"]),
|
112 |
+
outputs=gr.Dataframe(interactive=True),
|
113 |
+
title="Invoice Extraction System"
|
114 |
+
)
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
grpc_interface.launch(share=True)
|