File size: 17,193 Bytes
827af88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b21e8
827af88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40b095
 
 
827af88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import gradio as gr
import spaces
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
from sentence_transformers.quantization import quantize_embeddings
import pymssql
import os
import pandas as pd
from openai import OpenAI
from pydantic import BaseModel, Field
import json
from sentence_transformers import CrossEncoder
from torch import nn
import time


SqlServer = os.environ['SQL_SERVER']
SqlDatabase = os.environ['SQL_DB']
SqlUser = os.environ['SQL_USER']
SqlPass = os.environ['SQL_PASS']


OpenaiApiKey = os.environ.get("OPENAI_API_KEY")
OpenaiBaseUrl = os.environ.get("OPENAI_BASE_URL","https://generativelanguage.googleapis.com/v1beta/openai")


def sql(query,db=SqlDatabase, login_timeout = 120,onConnectionError = None):
    
    start_time = time.time()
    
    while True:
        try:
            cnxn = pymssql.connect(SqlServer,SqlUser,SqlPass,db, login_timeout = 5)
            break;
        except Exception as e:
            if onConnectionError:
                onConnectionError(e)
                
            if time.time() - start_time > login_timeout:
                raise TimeoutError("SQL Connection Timeout");
                
            time.sleep(1)  # Espera 1 segundo antes de tentar novamente
    
    
    cursor = cnxn.cursor()
    cursor.execute(query)
    
    columns = [column[0] for column in cursor.description]
    results = [dict(zip(columns, row)) for row in cursor.fetchall()]
    
    return results;



@spaces.GPU
def embed(text):
        
    query_embedding = Embedder.encode(text)
    return query_embedding.tolist();

 
@spaces.GPU 
def rerank(query,documents, **kwargs):
    return Reranker.rank(query, documents, **kwargs)

ClientOpenai = OpenAI(
    api_key=OpenaiApiKey 
    ,base_url=OpenaiBaseUrl 
)

def llm(messages, ResponseFormat = None, **kwargs):
    
    fn = ClientOpenai.chat.completions.create
    
    if ResponseFormat:
        fn = ClientOpenai.beta.chat.completions.parse
        
    params = {
         'model':"gemini-2.0-flash"
        ,'n':1
        ,'messages':messages
        ,'response_format':ResponseFormat
    }
    
    params.update(kwargs);
    
    response = fn(**params)
    
    if  params.get('stream'):
        return response

    return response.choices[0];

def ai(system,user, schema, **kwargs):
    msg = [
         {'role':"system",'content':system}
        ,{'role':"user",'content':user}
     ] 
    
    return llm(msg, schema, **kwargs);
    

def search(text, top = 10, onConnectionError = None):
    
    EnglishText = text 
    
    embeddings = embed(text);
    
    query = f"""
        declare @search vector(1024) = '{embeddings}'
        
        select top {top}
            *
        from (
            select 
                RelPath
                ,Similaridade = 1-CosDistance
                ,ScriptContent = ChunkContent
                ,ContentLength = LEN(ChunkContent)
                ,CosDistance
            from
                (
                    select 
                        *
                        ,CosDistance = vector_distance('cosine',embeddings,@search)
                    from 
                        Scripts 
                ) C
        ) v
        order by
            CosDistance
    """
    
    queryResults = sql(query, onConnectionError = onConnectionError);
    

    
    return queryResults
    
    
print("Loading embedding model");
Embedder = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")

print("Loading reranker");
Reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-large-v1", activation_fn=nn.Sigmoid())

class rfTranslatedText(BaseModel):
    text: str = Field(description='Translated text')
    lang: str = Field(description='source language')
    
class rfGenericText(BaseModel):
    text: str = Field(description='The text result')

def ChatFunc(message, history, LangMode, ChooseLang):
    

     # Determinar se o user quer fazer uma nova pesquisa!
     IsNewSearch = True;
     
     messages = []
     CurrentTable = None;
     
     def ChatBotOutput():
         return [messages,CurrentTable]
     
     class BotMessage():
          def __init__(self, *args, **kwargs):
              self.Message      =  gr.ChatMessage(*args, **kwargs)
              self.LastContent  = None 
              messages.append(self.Message);
              
          def __call__(self, content, noNewLine = False):
              if not content:
                  return;
              
              self.Message.content += content;
              self.LastContent = None;
              
              if not noNewLine:
                  self.Message.content += "\n";
              
              return ChatBotOutput();
              
          def update(self,content):
              
              if not self.LastContent:
                  self.LastContent = self.Message.content
                  
              self.Message.content = self.LastContent +" "+content+"\n";
              
              return ChatBotOutput(); 
          
          def done(self):
              self.Message.metadata['status'] = "done";
              return ChatBotOutput();
     
     def Reply(msg):
         m = BotMessage(msg);
         return ChatBotOutput();
     
     m = BotMessage("",metadata={"title":"Searching scripts...","status":"pending"});
     
     
     def OnConnError(err):
         print("Sql connection error:", err)
     
     
     try:
         # Responder algo sobre o historico!
         if IsNewSearch:
             
             yield m("Enhancing the prompt...")
             
             LLMResult = ai("""
                Translate the user's message to English.
                The message is a question related to a SQL Server T-SQL script that the user is searching for.
                You must do following actions:
                    - Identify the language of user text, using BCP 47 code (example: pt-BR, en-US, ja-JP, etc.)
                    - Generate translated user text to english
                Return both source language and translated text.
             """,message, rfTranslatedText)
             Question = LLMResult.message.parsed.text;
             
             if LangMode == "auto":
                SourceLang = LLMResult.message.parsed.lang;
             else:
                SourceLang = ChooseLang
             
             yield m(f"Lang:{SourceLang}({LangMode}), English Prompt: {Question}")
                      
             yield m("searching...")
             try:
                FoundScripts =  search(Question, onConnectionError = OnConnError)
             except Exception as e:
                 print('Search Error:')
                 print(e)
                 yield m("Houve alguma falha ao fazer a pesquisa. Tente novamente. Se persistir, veja orientações na aba Help!")
                 return;
             
             yield m("Doing rerank");
             doclist = [doc['ScriptContent'] for doc in FoundScripts]
            
             # Faz o reranker!
             for score in rerank(Question, doclist):
                 i = score['corpus_id'];
                 FoundScripts[i]['rank'] = str(score['score'])
             
             RankedScripts = sorted(FoundScripts, key=lambda item: float(item['rank']), reverse=True)

             
                
             ScriptTable = []
             for script in RankedScripts:
                link = "https://github.com/rrg92/sqlserver-lib/tree/main/" + script['RelPath']
                script['link'] = link;
                
                ScriptTable.append({
                    'Link': f'<a title="{link}" href="{link}" target="_blank">{script["RelPath"]}</a>'
                    ,'Length': script['ContentLength']
                    ,'Cosine Similarity':  script['Similaridade']
                    ,'Rank':  script['rank']
                })
             
             
             CurrentTable = pd.DataFrame(ScriptTable)
             yield m("Found scripts, check Rank tab for details!")
             
             
             WaitMessage = ai(f"""
                You will analyze some T-SQL scripts in order to check which is best for the user.
                You found scripts, presented them to the user, and now will do some work that takes time.
                Generate a message to tell the user to wait while you work, in the same language as the user.
                You will receive the question the user sent that triggered this process.
                Use the user’s original question to customize the message.
                Answer in lang: {SourceLang}
             """,message,rfGenericText).message.parsed.text
             
             yield Reply(WaitMessage);
             
             yield m(f"Analyzing scripts...")
             
             
             ResultJson = json.dumps(RankedScripts);
             
             SystemPrompt = f"""
                You are an assistant that helps users find the best T-SQL scripts for their specific needs.  
                These scripts were created by Rodrigo Ribeiro Gomes and are publicly available for users to query and use.

                The user will provide a short description of what they are looking for, and your task is to present the most relevant scripts.

                To assist you, here is a JSON object with the top matches based on the current user query:  
                {ResultJson}
                
                ---
                This JSON contains all the scripts that matched the user's input.  
                Analyze each script's name and content, and create a ranked summary of the best recommendations according to the user's need.

                Only use the information available in the provided JSON. Do not reference or mention anything outside of this list.  
                You can include parts of the scripts in your answer to illustrate or give usage examples based on the user's request.

                Re-rank the results if necessary, presenting them from the most to the least relevant.  
                You may filter out scripts that appear unrelated to the user query.

                ---
                ### Output Rules

                - Review each script and evaluate how well it matches the user’s request.  
                - Summarize each script, ordering from the most relevant to the least relevant.  
                - Write personalized and informative review text for each recommendation.  
                - If applicable, explain how the user should run the script, including parameters or sections (like `WHERE` clauses) they might need to customize.  
                - When referencing a script, include the link provided in the JSON — all scripts are hosted on GitHub
                - YOU MUST ANSWER THAT LANGUAGE: {SourceLang}
             """

             ScriptPrompt = [
                { 'role':'system', 'content':SystemPrompt }
                ,{ 'role':'user', 'content':message }
             ]
            
             


             llmanswer = llm(ScriptPrompt, stream = True) 
             yield m.done()
             
             answer = BotMessage("");
             
             for chunk in llmanswer:
                 content = chunk.choices[0].delta.content
                 yield answer(content, noNewLine = True)
     finally:          
        yield m.done()

def SearchFiles(message):
    
    Question = message;
    
    try:
        FoundScripts =  search(Question)
    except Exception as e:
        print(e)
        return "Houve alguma falha ao executar a consulta no banco. Tente novamente. Se persistir, veja orientações na aba Help!"
        
    doclist = [doc['ScriptContent'] for doc in FoundScripts]

    # Faz o reranker!

             
             
    ScriptTable = [];
    for score in rerank(Question, doclist):
        i = score['corpus_id'];
        script =  FoundScripts[i];
        script['rank'] = str(score['score'])
        link = "https://github.com/rrg92/sqlserver-lib/tree/main/" + script['RelPath']
        script['link'] = link;
        
        if not AsJson:
                ScriptTable.append({
                    'Link': f'<a title="{link}" href="{link}" target="_blank">{script["RelPath"]}</a>'
                    ,'Length': script['ContentLength']
                    ,'Cosine Similarity':  script['Similaridade']
                    ,'Rank':  script['rank']
                })

    RankedScripts = sorted(FoundScripts, key=lambda item: float(item['rank']), reverse=True)
    
    #result = pd.DataFrame(ScriptTable)
    jsonresult = json.dumps(RankedScripts)
    
    return jsonresult;

resultTable = gr.Dataframe(datatype = ['html','number','number'], interactive = False, show_search = "search");
TextResults = gr.Textbox()

with gr.Blocks(fill_height=True) as demo:
    
    with gr.Column():
        
        tabSettings = gr.Tab("Settings", render = False)
        
        with tabSettings:
            LangOpts = gr.Radio([("Auto Detect from text","auto"), ("Use browser language","browser")], value="auto", label="Language", info="Choose lang used by AI to answer you!")
            LangChoose = gr.Textbox(info = "This will be filled with detect browser language, but you can change")
            
            LangOpts.change(None, [LangOpts],[LangChoose], js = """
                function(opt){
                    if(opt == "browser"){
                        return navigator ? navigator.language : "en-US";
                    }
                }
            """)

        
        with gr.Tab("Chat", scale = 1):
            ChatTextBox = gr.Textbox(max_length = 500, info = "Which script are you looking for?", submit_btn = True);
            
            gr.ChatInterface(
                ChatFunc
                ,additional_outputs=[resultTable]
                ,additional_inputs=[LangOpts,LangChoose]
                ,type="messages"
                ,textbox = ChatTextBox
            ) 

        tabSettings.render()
            
            
        with gr.Tab("Rank"):
            txtSearchTable = gr.Textbox(label="Search script files",info="Description of what you want", visible = False)
            AsJson = gr.Checkbox(visible = False)
            resultTable.render();
            
            
            txtSearchTable.submit(SearchFiles, [txtSearchTable],[TextResults])
            
        with gr.Tab("Help"):
            gr.Markdown("""
                Bem-vindo ao Space SQL Server Lib  
                Este space permite que você encontre scripts SQL do https://github.com/rrg92/sqlserver-lib com base nas suas necessidades  
                

                ## Instruções de Uso
                Apenas descreva o que você precisa no campo de chat e aguarde a IA analisar os melhores scripts do repositório para você.  
                Além de uma explicação feita pela IA, a aba "Rank", contém uma tabela com os scripts encontrados e seus respectictos rank. 
                A coluna Cosine Similarity é o nível de similaridades da sua pergunta com o script (calculado baseado nos embeddings do seu texto e do script).
                A coluna Rank é um score onde quanto maior o valor mais relacionado ao seu texto o script é (calculado usando rerank/cross encoders). A tabela vem ordenada por essa coluna.
            
                    
                ## Fluxo básico  
                - Quando você digita o texto, iremos fazer uma busca usando embeddings em um banco Azure SQL Database  
                - Os embeddings são calculados usando um modelo carregado no proprio script, via ZeroGPU.  
                - Os top 20 resultados mais similares são retornados e então um rerank é feito  
                - O rerank também é feito por um modelo que roda no próprio script, em ZeroGPU  
                - Estes resultados ordenados por reran, são então enviados ao LLM para que analise e monte uma resposta para você.  

                
                ## Sobre o uso e eventuais erros 
                Eu tento usar o máximo de recursos FREE e open possíveis, e portanto, eventualmente, o Space pode falhar por alguma limitação.   
                Alguns possíveis pontos de falha:
                - Créditos free do google ou rate limit 
                - Azure SQL database offline devido a crédito ou ao auto-pause (devido ao free tier)
                - Limites de uso do ZeroGPU do Hugging Face.
                    
                Você pode me procurar no [linkedin](https://www.linkedin.com/in/rodrigoribeirogomes/), caso receba erroslimit 
                
            """)
        
        with gr.Tab("Other", visible = False):
            txtEmbed  = gr.Text(label="Text to embed", visible=False)
            btnEmbed = gr.Button("embed");
            btnEmbed.click(embed, [txtEmbed], [txtEmbed])
            
            TextResults.render();
       
        
        
        
    
    
    
    
    
    



if __name__ == "__main__":
    demo.launch(
        share=False,
        debug=False,
        server_port=7860,
        server_name="0.0.0.0",
        allowed_paths=[]
    )