File size: 972 Bytes
19f2b1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
import spaces
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
from sentence_transformers.quantization import quantize_embeddings

print("Loading embedding model");
dimensions = 768
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1", truncate_dim=dimensions)

@spaces.GPU
def embed(text):
        
    query_embedding = model.encode(text, prompt_name="query")
    return query_embedding.tolist();



with gr.Blocks() as demo:
    txtEmbed  = gr.Text(label="Text to embed")
    btnEmbed = gr.Button("embed");
    
    search = gr.Text(label="Script to search")
    
    results = gr.Text(label="results");
    
    btnEmbed.click(embed, [txtEmbed], [results])
    
    



if __name__ == "__main__":
    demo.launch(
        share=False,
        debug=False,
        server_port=7860,
        server_name="0.0.0.0",
        allowed_paths=[]
    )