import gradio as gr import spaces from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim from sentence_transformers.quantization import quantize_embeddings print("Loading embedding model"); dimensions = 768 model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1", truncate_dim=dimensions) @spaces.GPU def embed(text): query_embedding = model.encode(text, prompt_name="query") return query_embedding.tolist(); with gr.Blocks() as demo: txtEmbed = gr.Text(label="Text to embed") btnEmbed = gr.Button("embed"); search = gr.Text(label="Script to search") results = gr.Text(label="results"); btnEmbed.click(embed, [txtEmbed], [results]) if __name__ == "__main__": demo.launch( share=False, debug=False, server_port=7860, server_name="0.0.0.0", allowed_paths=[] )