IAGO / owl /utils /gaia.py
Wendong-Fan's picture
update readme and format fix
98ef7f1
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import sys
sys.path.append("../")
import json
import random
import re
import string
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Union, Tuple
from tqdm import tqdm
from camel.benchmarks import BaseBenchmark
from camel.tasks import Task
from camel.logger import get_logger
from .common import extract_pattern
from .enhanced_role_playing import run_society, OwlGAIARolePlaying
logger = get_logger(__name__)
class GAIABenchmark(BaseBenchmark):
r"""GAIA Benchmark adapted from `"GAIA: a benchmark for General AI
Assistants"
<https://huggingface.co./datasets/gaia-benchmark/GAIA>`_.
Args:
data_dir (str): The directory to save the data.
save_to (str): The file to save the results.
processes (int, optional): The number of processes to use.
(default: :obj:`1`)
"""
def __init__(
self,
data_dir: str,
save_to: str,
processes: int = 1,
):
r"""Initialize the GAIA benchmark.
Args:
data_dir (str): The directory to save the data.
save_to (str): The file to save the results.
processes (int, optional): The number of processes to use for
parallel processing. (default: :obj:`1`)
"""
super().__init__("gaia", data_dir, save_to, processes)
def download(self):
r"""Download the GAIA dataset."""
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="gaia-benchmark/GAIA",
repo_type="dataset",
local_dir=self.data_dir,
local_dir_use_symlinks=True,
)
def _check_task_completed(self, task_id: str) -> bool:
for data in self._results:
if data["task_id"] == task_id:
return True
return False
def dump_tasks(self, save_path: str, datas):
constructed_data = []
for idx, data in enumerate(datas):
tmp_dict = {
"idx": idx,
"task_id": data["task_id"],
"Question": data["Question"],
"Level": data["Level"],
"Final answer": data["Final answer"],
"Annotation Metadata": data["Annotator Metadata"],
}
constructed_data.append(tmp_dict)
with open(save_path, "w", encoding="utf-8") as f:
json.dump(constructed_data, f, indent=4)
f.close()
print(f"Successfully dumped tasks to {save_path}")
def load(self, force_download=False):
r"""Load the GAIA dataset.
Args:
force_download (bool, optional): Whether to
force download the data.
"""
if force_download:
logger.info("Force downloading data.")
self.download()
# Define validation and test directories
valid_dir = self.data_dir / "2023/validation"
test_dir = self.data_dir / "2023/test"
# Check if directories exist; if not, download the data
if not valid_dir.is_dir() or not test_dir.is_dir():
logger.info("Data not found. Downloading data.")
self.download()
# Load metadata for both validation and test datasets
for path, label in zip([valid_dir, test_dir], ["valid", "test"]):
self._data[label] = []
with open(path / "metadata.jsonl", "r") as f:
lines = f.readlines()
for line in lines:
data = json.loads(line)
if data["task_id"] == "0-0-0-0-0":
continue
if data["file_name"]:
data["file_name"] = path / data["file_name"]
self._data[label].append(data)
return self
@property
def train(self):
r"""Get the training set."""
raise NotImplementedError("GAIA does not have a training set.")
def run(
self,
user_role_name: str,
assistant_role_name: str,
user_agent_kwargs: dict,
assistant_agent_kwargs: dict,
on: Literal["train", "valid", "test"],
level: Union[int, List[int], Literal["all"]],
randomize: bool = False,
subset: Optional[int] = None,
idx: Optional[List[int]] = None,
save_result: bool = False,
) -> Dict[str, Any]:
# Validate inputs
if on not in ["valid", "test"]:
raise ValueError(
f"Invalid value for `on`: {on}, expected 'valid' or 'test'."
)
levels = (
[1, 2, 3]
if level == "all"
else [level]
if isinstance(level, int)
else level
)
if not all(isinstance(level, int) and level in [1, 2, 3] for level in levels):
raise ValueError(
f"Invalid value for `level`: {level}, expected 1, 2, 3 " "or 'all'."
)
logger.info(f"Running benchmark on {on} set at levels {levels}.")
datas = [data for data in self._data[on] if data["Level"] in levels]
# Shuffle and subset data if necessary
if randomize:
random.shuffle(datas)
if subset:
datas = datas[:subset]
if idx is not None:
# pick only the tasks with the specified idx
if len(idx) != 0:
datas = [datas[i] for i in idx]
logger.info(f"Number of tasks: {len(datas)}")
self._results = []
if save_result:
try:
with open(self.save_to, "r", encoding="utf-8") as f:
self._results = json.load(f)
f.close()
except Exception as e:
logger.warning(e)
# raise FileNotFoundError(f"{self.save_to} does not exist.")
datas = [
data for data in datas if not self._check_task_completed(data["task_id"])
]
logger.info(f"Number of tasks to be processed: {len(datas)}")
# Process tasks
for task in tqdm(datas, desc="Running"):
if_prepared_task, info = self._prepare_task(task)
if not if_prepared_task:
_result_info = {
"task_id": task["task_id"],
"question": task["Question"],
"level": task["Level"],
"model_answer": None,
"ground_truth": None,
"score": 0,
"history": None,
}
self._results.append(_result_info)
continue
try:
logger.info(f"Task Question: {task['Question']}")
logger.info(f"Required tools: {task['Annotator Metadata']['Tools']}")
task_kwargs = {
"task_prompt": task["Question"],
"with_task_specify": False,
}
society = OwlGAIARolePlaying(
**task_kwargs,
user_role_name=user_role_name,
user_agent_kwargs=user_agent_kwargs,
assistant_role_name=assistant_role_name,
assistant_agent_kwargs=assistant_agent_kwargs,
)
raw_answer, chat_history, token_info = run_society(society)
try:
answer = extract_pattern(raw_answer, "final_answer")
except Exception as e:
logger.error(
f"Error in extracting final answer from text {raw_answer}: {e}"
)
answer = None
logger.info(
f"Model answer: {answer}, Ground truth: {task['Final answer']}"
)
_result_info = {
"task_id": task["task_id"],
"question": task["Question"]
+ "Please decompose the task into several sub-tasks and find the answer step-by-step.",
"level": task["Level"],
"model_answer": answer,
"ground_truth": task["Final answer"],
"score": self.question_scorer(answer, task["Final answer"]),
"token_info": token_info,
"history": chat_history,
}
self._results.append(_result_info)
except Exception as e:
logger.error(f"Error in processing task: {e}")
if save_result:
with open(self.save_to, "w") as f:
json.dump(self._results, f, indent=4, ensure_ascii=False)
f.close()
return self._generate_summary()
def _prepare_task(self, task: Dict[str, Any]) -> Tuple[bool, str]:
r"""Prepare the task by validating and enriching its data."""
if task["file_name"]:
if isinstance(task["file_name"], Path):
task["file_name"] = str(task["file_name"])
file_path = Path(task["file_name"])
if not file_path.exists():
logger.info(f"Skipping task because file not found: {file_path}")
return False, f"Skipping task because file not found: {file_path}"
if file_path.suffix in [".pdf", ".docx", ".doc", ".txt"]:
task["Question"] += (
f" Here are the necessary document files: {file_path}"
)
elif file_path.suffix in [".jpg", ".jpeg", ".png"]:
task["Question"] += f" Here are the necessary image files: {file_path}"
elif file_path.suffix in [".xlsx", "xls", ".csv"]:
task["Question"] += (
f" Here are the necessary table files: {file_path}, for processing excel file, you can write python code and leverage excel toolkit to process the file step-by-step and get the information."
)
elif file_path.suffix in [".py"]:
task["Question"] += f" Here are the necessary python files: {file_path}"
else:
task["Question"] += f" Here are the necessary files: {file_path}"
return True, None
def _create_task(self, task: Dict[str, Any]) -> Task:
r"""Create a user message from a task.
Args:
task (Dict[str, Any]): The task to create the message from.
Returns:
Task: The task created from the input.
"""
return Task(id=str(task["task_id"]), content=task["Question"])
def _generate_summary(self) -> Dict[str, Any]:
r"""Generate and return a summary of the benchmark results."""
correct = sum(result["score"] for result in self._results)
return {
"total": len(self._results),
"correct": correct,
"results": self._results,
"accuracy": correct / len(self._results) if len(self._results) > 0 else 0,
}
def question_scorer(self, model_answer: str, ground_truth: str) -> bool:
r"""Scorer for the GAIA benchmark.
https://huggingface.co./spaces/gaia-benchmark/leaderboard/blob/main/
scorer.py
Args:
model_answer (str): The model answer.
ground_truth (str): The ground truth answer.
Returns:
bool: The score of the model
"""
def is_float(element: Any) -> bool:
try:
float(element)
return True
except ValueError:
return False
if is_float(ground_truth):
logger.info(f"Evaluating {model_answer} as a number.")
normalized_answer = self.normalize_number_str(model_answer)
return normalized_answer == float(ground_truth)
elif any(char in ground_truth for char in [",", ";"]):
logger.info(f"Evaluating {model_answer} as a comma separated list.")
gt_elems = self.split_string(ground_truth)
ma_elems = self.split_string(model_answer)
if len(gt_elems) != len(ma_elems):
logger.warning(
"Answer lists have different lengths, returning False.",
UserWarning,
)
return False
comparisons = []
for ma_elem, gt_elem in zip(ma_elems, gt_elems):
if is_float(gt_elem):
normalized_ma_elem = self.normalize_number_str(ma_elem)
comparisons.append(normalized_ma_elem == float(gt_elem))
else:
ma_elem = self.normalize_str(ma_elem, remove_punct=False)
gt_elem = self.normalize_str(gt_elem, remove_punct=False)
comparisons.append(ma_elem == gt_elem)
return all(comparisons)
else:
logger.info(f"Evaluating {model_answer} as a string.")
ma_elem = self.normalize_str(model_answer)
gt_elem = self.normalize_str(ground_truth)
return ma_elem == gt_elem
def normalize_number_str(self, number_str: str) -> float:
for char in ["$", "%", ","]:
number_str = number_str.replace(char, "")
try:
return float(number_str)
except ValueError:
logger.error(f"String {number_str} cannot be normalized to number str.")
return float("inf")
def split_string(self, s: str, char_list: Optional[List[str]] = None) -> list[str]:
r"""Split a string based on a list of characters.
Args:
s (str): The string to split.
char_list (Optional[List[str]], optional): T
he list of characters to split on.
(default: :obj:`None`)
"""
if char_list is None:
char_list = [",", ";"]
pattern = f"[{''.join(char_list)}]"
return re.split(pattern, s)
def normalize_str(self, input_str, remove_punct=True) -> str:
r"""Normalize a string.
Args:
input_str: The input string to normalize.
remove_punct: Whether to remove punctuation.
Returns:
str: The normalized string.
"""
no_spaces = re.sub(r"\s", "", input_str)
if remove_punct:
translator = str.maketrans("", "", string.punctuation)
return no_spaces.lower().translate(translator)
else:
return no_spaces.lower()