File size: 5,475 Bytes
4ca8fdc
 
 
 
 
 
 
 
 
 
 
 
 
38255bb
4ca8fdc
 
 
 
0848a53
4ca8fdc
38255bb
 
 
 
 
 
4ca8fdc
20e779e
d557cc1
38255bb
 
3808745
38255bb
3808745
4ca8fdc
 
 
 
7a12aab
 
 
 
 
 
 
38255bb
 
3808745
4ca8fdc
 
 
38255bb
 
4ca8fdc
38255bb
3808745
38255bb
4ca8fdc
38255bb
 
 
 
44f72cc
38255bb
 
 
 
44f72cc
38255bb
 
0848a53
38255bb
d00a794
38255bb
 
 
 
44f72cc
38255bb
 
 
 
d00a794
38255bb
 
 
 
d00a794
38255bb
 
19ebfc5
 
 
 
 
38255bb
4ca8fdc
38255bb
 
20e779e
38255bb
6404ebc
38255bb
4ca8fdc
38255bb
4ca8fdc
38255bb
 
4ca8fdc
 
 
0eff6e1
38255bb
19ebfc5
d557cc1
38255bb
4ca8fdc
38255bb
 
 
4ca8fdc
38255bb
 
 
 
 
4ca8fdc
38255bb
3808745
38255bb
 
 
 
 
4ca8fdc
38255bb
4ca8fdc
38255bb
 
 
 
 
 
0848a53
 
 
 
4ca8fdc
38255bb
0848a53
38255bb
4ca8fdc
38255bb
4ca8fdc
38255bb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

# To run this file, you need to configure the Qwen API key
# You can obtain your API key from Bailian platform: bailian.console.aliyun.com
# Set it as QWEN_API_KEY="your-api-key" in your .env file or add it to your environment variables

import sys
from dotenv import load_dotenv
from camel.models import ModelFactory
from camel.toolkits import (
    CodeExecutionToolkit,
    ExcelToolkit,
    ImageAnalysisToolkit,
    SearchToolkit,
    VideoAnalysisToolkit,
    BrowserToolkit,
    FileWriteToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.societies import RolePlaying

from owl.utils import run_society, DocumentProcessingToolkit

from camel.logger import set_log_level


import pathlib

base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))

set_log_level(level="DEBUG")


def construct_society(question: str) -> RolePlaying:
    """
    Construct a society of agents based on the given question.

    Args:
        question (str): The task or question to be addressed by the society.

    Returns:
        RolePlaying: A configured society of agents ready to address the question.
    """

    # Create models for different components
    models = {
        "user": ModelFactory.create(
            model_platform=ModelPlatformType.QWEN,
            model_type=ModelType.QWEN_MAX,
            model_config_dict={"temperature": 0},
        ),
        "assistant": ModelFactory.create(
            model_platform=ModelPlatformType.QWEN,
            model_type=ModelType.QWEN_MAX,
            model_config_dict={"temperature": 0},
        ),
        "browsing": ModelFactory.create(
            model_platform=ModelPlatformType.QWEN,
            model_type=ModelType.QWEN_VL_MAX,
            model_config_dict={"temperature": 0},
        ),
        "planning": ModelFactory.create(
            model_platform=ModelPlatformType.QWEN,
            model_type=ModelType.QWEN_MAX,
            model_config_dict={"temperature": 0},
        ),
        "video": ModelFactory.create(
            model_platform=ModelPlatformType.QWEN,
            model_type=ModelType.QWEN_VL_MAX,
            model_config_dict={"temperature": 0},
        ),
        "image": ModelFactory.create(
            model_platform=ModelPlatformType.QWEN,
            model_type=ModelType.QWEN_VL_MAX,
            model_config_dict={"temperature": 0},
        ),
        "document": ModelFactory.create(
            model_platform=ModelPlatformType.QWEN,
            model_type=ModelType.QWEN_VL_MAX,
            model_config_dict={"temperature": 0},
        ),
    }

    # Configure toolkits
    tools = [
        *BrowserToolkit(
            headless=False,  # Set to True for headless mode (e.g., on remote servers)
            web_agent_model=models["browsing"],
            planning_agent_model=models["planning"],
            output_language="Chinese",
        ).get_tools(),
        *VideoAnalysisToolkit(model=models["video"]).get_tools(),
        *CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
        *ImageAnalysisToolkit(model=models["image"]).get_tools(),
        SearchToolkit().search_duckduckgo,
        SearchToolkit().search_google,  # Comment this out if you don't have google search
        SearchToolkit().search_wiki,
        SearchToolkit().search_baidu,
        *ExcelToolkit().get_tools(),
        *DocumentProcessingToolkit(model=models["document"]).get_tools(),
        *FileWriteToolkit(output_dir="./").get_tools(),
    ]

    # Configure agent roles and parameters
    user_agent_kwargs = {"model": models["user"]}
    assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}

    # Configure task parameters
    task_kwargs = {
        "task_prompt": question,
        "with_task_specify": False,
    }

    # Create and return the society
    society = RolePlaying(
        **task_kwargs,
        user_role_name="user",
        user_agent_kwargs=user_agent_kwargs,
        assistant_role_name="assistant",
        assistant_agent_kwargs=assistant_agent_kwargs,
        output_language="Chinese",
    )

    return society


def main():
    r"""Main function to run the OWL system with an example question."""
    # Example research question
    default_task = "浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格"

    # Override default task if command line argument is provided
    task = sys.argv[1] if len(sys.argv) > 1 else default_task

    # Construct and run the society
    society = construct_society(task)
    answer, chat_history, token_count = run_society(society)

    # Output the result
    print(f"\033[94mAnswer: {answer}\033[0m")


if __name__ == "__main__":
    main()