import spaces import gradio as gr import numpy as np import PIL.Image from PIL import Image import random from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Make sure to use torch.float16 consistently throughout the pipeline pipe = StableDiffusionXLPipeline.from_pretrained( "votepurchase/waiNSFWIllustrious_v120", torch_dtype=torch.float16, variant="fp16", # Explicitly use fp16 variant use_safetensors=True # Use safetensors if available ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(device) # Force all components to use the same dtype pipe.text_encoder.to(torch.float16) pipe.text_encoder_2.to(torch.float16) pipe.vae.to(torch.float16) pipe.unet.to(torch.float16) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1216 @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): # Check and truncate prompt if too long (CLIP can only handle 77 tokens) if len(prompt.split()) > 60: # Rough estimate to avoid exceeding token limit print("Warning: Prompt may be too long and will be truncated by the model") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) try: output_image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return output_image except RuntimeError as e: print(f"Error during generation: {e}") # Return a blank image with error message error_img = Image.new('RGB', (width, height), color=(0, 0, 0)) return error_img css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt (keep it under 60 words for best results)", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=28, step=1, value=28, ) run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch()