Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,409 Bytes
541022c 1c2ba36 541022c 1c2ba36 480ec3f 1c2ba36 541022c 1c2ba36 480ec3f 541022c 4f5fe11 541022c 480ec3f 541022c 1c2ba36 541022c 1c2ba36 480ec3f 1c2ba36 541022c 87959d7 1c2ba36 480ec3f 87959d7 480ec3f 1c2ba36 541022c 1c2ba36 541022c 1c2ba36 87959d7 1c2ba36 541022c 1c2ba36 541022c 1c2ba36 541022c 1c2ba36 87959d7 1c2ba36 541022c 1c2ba36 480ec3f 1c2ba36 480ec3f 1c2ba36 541022c 1c2ba36 541022c 1c2ba36 541022c 1c2ba36 541022c 1c2ba36 480ec3f 1c2ba36 541022c 1c2ba36 541022c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Make sure to use torch.float16 consistently throughout the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"votepurchase/waiNSFWIllustrious_v120",
torch_dtype=torch.float16,
variant="fp16", # Explicitly use fp16 variant
use_safetensors=True # Use safetensors if available
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
# Force all components to use the same dtype
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# Check and truncate prompt if too long (CLIP can only handle 77 tokens)
if len(prompt.split()) > 60: # Rough estimate to avoid exceeding token limit
print("Warning: Prompt may be too long and will be truncated by the model")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
except RuntimeError as e:
print(f"Error during generation: {e}")
# Return a blank image with error message
error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
return error_img
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (keep it under 60 words for best results)",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch() |