Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
|
|
4 |
sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
5 |
|
|
|
6 |
def analyze_sentiment(text):
|
7 |
result = sentiment_analyzer(text)[0]
|
8 |
sentiment_score = result['label']
|
9 |
|
|
|
10 |
if sentiment_score == '1 star':
|
11 |
return 1
|
12 |
elif sentiment_score == '2 stars':
|
@@ -18,6 +21,7 @@ def analyze_sentiment(text):
|
|
18 |
else:
|
19 |
return 5
|
20 |
|
|
|
21 |
examples = [
|
22 |
"I love this product! It's amazing!",
|
23 |
"This was the worst experience I've ever had.",
|
@@ -25,6 +29,7 @@ examples = [
|
|
25 |
"Absolutely fantastic! I would recommend it to everyone."
|
26 |
]
|
27 |
|
|
|
28 |
iface = gr.Interface(
|
29 |
fn=analyze_sentiment, # Function to call for sentiment analysis
|
30 |
inputs=[
|
@@ -37,4 +42,5 @@ iface = gr.Interface(
|
|
37 |
description="Sentiment analysis using BERT-based model for multilingual sentiment prediction."
|
38 |
)
|
39 |
|
|
|
40 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load sentiment analysis model from Hugging Face
|
5 |
sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
6 |
|
7 |
+
# Function to analyze sentiment and convert it to star rating (1-5)
|
8 |
def analyze_sentiment(text):
|
9 |
result = sentiment_analyzer(text)[0]
|
10 |
sentiment_score = result['label']
|
11 |
|
12 |
+
# Convert sentiment score to numeric star rating (1-5 stars)
|
13 |
if sentiment_score == '1 star':
|
14 |
return 1
|
15 |
elif sentiment_score == '2 stars':
|
|
|
21 |
else:
|
22 |
return 5
|
23 |
|
24 |
+
# Define example sentences for easy testing
|
25 |
examples = [
|
26 |
"I love this product! It's amazing!",
|
27 |
"This was the worst experience I've ever had.",
|
|
|
29 |
"Absolutely fantastic! I would recommend it to everyone."
|
30 |
]
|
31 |
|
32 |
+
# Build the Gradio interface
|
33 |
iface = gr.Interface(
|
34 |
fn=analyze_sentiment, # Function to call for sentiment analysis
|
35 |
inputs=[
|
|
|
42 |
description="Sentiment analysis using BERT-based model for multilingual sentiment prediction."
|
43 |
)
|
44 |
|
45 |
+
# Launch the Gradio interface
|
46 |
iface.launch()
|