renad0 commited on
Commit
f059988
·
verified ·
1 Parent(s): 23a8caf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -0
app.py CHANGED
@@ -1,12 +1,15 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
 
4
  sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
5
 
 
6
  def analyze_sentiment(text):
7
  result = sentiment_analyzer(text)[0]
8
  sentiment_score = result['label']
9
 
 
10
  if sentiment_score == '1 star':
11
  return 1
12
  elif sentiment_score == '2 stars':
@@ -18,6 +21,7 @@ def analyze_sentiment(text):
18
  else:
19
  return 5
20
 
 
21
  examples = [
22
  "I love this product! It's amazing!",
23
  "This was the worst experience I've ever had.",
@@ -25,6 +29,7 @@ examples = [
25
  "Absolutely fantastic! I would recommend it to everyone."
26
  ]
27
 
 
28
  iface = gr.Interface(
29
  fn=analyze_sentiment, # Function to call for sentiment analysis
30
  inputs=[
@@ -37,4 +42,5 @@ iface = gr.Interface(
37
  description="Sentiment analysis using BERT-based model for multilingual sentiment prediction."
38
  )
39
 
 
40
  iface.launch()
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ # Load sentiment analysis model from Hugging Face
5
  sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
6
 
7
+ # Function to analyze sentiment and convert it to star rating (1-5)
8
  def analyze_sentiment(text):
9
  result = sentiment_analyzer(text)[0]
10
  sentiment_score = result['label']
11
 
12
+ # Convert sentiment score to numeric star rating (1-5 stars)
13
  if sentiment_score == '1 star':
14
  return 1
15
  elif sentiment_score == '2 stars':
 
21
  else:
22
  return 5
23
 
24
+ # Define example sentences for easy testing
25
  examples = [
26
  "I love this product! It's amazing!",
27
  "This was the worst experience I've ever had.",
 
29
  "Absolutely fantastic! I would recommend it to everyone."
30
  ]
31
 
32
+ # Build the Gradio interface
33
  iface = gr.Interface(
34
  fn=analyze_sentiment, # Function to call for sentiment analysis
35
  inputs=[
 
42
  description="Sentiment analysis using BERT-based model for multilingual sentiment prediction."
43
  )
44
 
45
+ # Launch the Gradio interface
46
  iface.launch()