renad0 commited on
Commit
4ffa2ae
·
verified ·
1 Parent(s): b152002

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
5
+
6
+ def analyze_sentiment(text):
7
+ result = sentiment_analyzer(text)[0]
8
+ sentiment_score = result['label']
9
+
10
+ if sentiment_score == '1 star':
11
+ return 1
12
+ elif sentiment_score == '2 stars':
13
+ return 2
14
+ elif sentiment_score == '3 stars':
15
+ return 3
16
+ elif sentiment_score == '4 stars':
17
+ return 4
18
+ else:
19
+ return 5
20
+
21
+ examples = [
22
+ "I love this product! It's amazing!",
23
+ "This was the worst experience I've ever had.",
24
+ "The movie was okay, not great but not bad either.",
25
+ "Absolutely fantastic! I would recommend it to everyone."
26
+ ]
27
+
28
+ iface = gr.Interface(
29
+ fn=analyze_sentiment, # Function to call for sentiment analysis
30
+ inputs=[
31
+ gr.Textbox(label="Enter Text", placeholder="Type or paste a sentence or paragraph here...", lines=5),
32
+ gr.Button("Analyze Sentiment") # Button to trigger analysis
33
+ ],
34
+ outputs=gr.Textbox(label="Sentiment Rating (1 to 5 stars)"), # Display sentiment rating
35
+ live=False, # Disable live preview while typing
36
+ examples=examples, # Predefined examples
37
+ description="Sentiment analysis using BERT-based model for multilingual sentiment prediction."
38
+ )
39
+
40
+ iface.launch()