|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") |
|
|
|
def summarize_text(text, min_length, max_length): |
|
summary = summarizer(text, min_length=min_length, max_length=max_length) |
|
return summary[0]['summary_text'] |
|
|
|
iface = gr.Interface( |
|
fn=summarize_text, |
|
inputs=[ |
|
gr.Textbox(label="Enter Text", placeholder="Type or paste a long text here...", lines=10), |
|
gr.Slider(minimum=10, maximum=50, step=1, label="Minimum Length", value=10), |
|
gr.Slider(minimum=50, maximum=150, step=1, label="Maximum Length", value=100), |
|
], |
|
outputs=gr.Textbox(label="Summarized Text"), |
|
live=False, |
|
description="Text Summarization using BART model. Set minimum and maximum token lengths for the summary." |
|
) |
|
|
|
iface.launch() |
|
|