File size: 18,805 Bytes
24001ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
09ec7bd
 
 
2f2c931
24001ab
4ddf4f2
 
1378b3b
 
65a487f
09ec7bd
 
0259037
 
bae8b12
6b539de
2f2c931
7f3c462
 
 
6d30421
0259037
4ddf4f2
 
c2e746b
0259037
4ddf4f2
 
0259037
1378b3b
 
0259037
1378b3b
 
 
 
 
0259037
4dd02a3
6d30421
0196abc
0259037
bae8b12
2f2c931
 
0259037
2f2c931
 
0259037
7b17bf9
0259037
 
6b539de
0259037
 
 
 
 
 
 
 
 
 
bae8b12
6b539de
bae8b12
0259037
 
 
 
 
 
 
7f3c462
2f2c931
 
0259037
2f2c931
 
0259037
2f2c931
0259037
4ddf4f2
0259037
4ddf4f2
55b9615
195dc2b
4ddf4f2
0259037
bae8b12
 
0259037
 
bae8b12
 
 
 
0259037
bae8b12
 
7f3c462
 
0259037
bae8b12
3c91df4
bae8b12
0259037
 
bae8b12
0259037
 
bae8b12
 
0259037
bae8b12
0259037
 
bae8b12
0259037
 
bae8b12
0259037
195dc2b
bae8b12
195dc2b
0259037
 
bae8b12
195dc2b
0259037
 
55b9615
0259037
bae8b12
 
 
3c91df4
bae8b12
0259037
 
bae8b12
0259037
 
bae8b12
0259037
09ec7bd
 
0259037
 
 
3c91df4
0259037
 
3c91df4
0259037
 
3c91df4
0259037
 
 
09ec7bd
bae8b12
24001ab
0259037
24001ab
6b539de
09ec7bd
0259037
 
09ec7bd
0259037
 
24001ab
0259037
2f2c931
3c91df4
24001ab
 
6d30421
1378b3b
 
0259037
1378b3b
24001ab
1378b3b
 
0259037
7f3c462
0259037
 
7f3c462
55b9615
2f2c931
0259037
 
6d30421
0259037
 
c2e746b
ca7d12d
0259037
 
 
ca7d12d
0259037
 
24001ab
1378b3b
 
0259037
7f3c462
0259037
 
7f3c462
2f2c931
 
 
0259037
195dc2b
 
0259037
 
 
 
 
 
 
 
6d30421
2f2c931
 
0259037
 
 
 
2f2c931
0259037
 
4ddf4f2
 
 
0259037
 
 
 
 
24001ab
0259037
6d30421
 
 
 
 
2f2c931
3c91df4
0259037
 
6d30421
24001ab
3c91df4
 
0259037
3c91df4
 
0259037
 
 
3c91df4
0259037
3c91df4
 
1378b3b
0259037
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# import os
# import time
# from fastapi import FastAPI,Request
# from fastapi.responses import HTMLResponse
# from fastapi.staticfiles import StaticFiles
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from pydantic import BaseModel
# from fastapi.responses import JSONResponse
# import uuid  # for generating unique IDs
# import datetime
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.templating import Jinja2Templates
# from huggingface_hub import InferenceClient
# import json
# import re
# from gradio_client import Client
# from simple_salesforce import Salesforce, SalesforceLogin
# from llama_index.llms.huggingface import HuggingFaceLLM
# # from llama_index.llms.huggingface import HuggingFaceInferenceAPI


# # Define Pydantic model for incoming request body
# class MessageRequest(BaseModel):
#     message: str
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# llm_client = InferenceClient(
#     model=repo_id,
#     token=os.getenv("HF_TOKEN"),
# )


# os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
# username = os.getenv("username")
# password = os.getenv("password")
# security_token = os.getenv("security_token")
# domain =  os.getenv("domain")# Using sandbox environment
# session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)

#     # Create Salesforce object
# sf = Salesforce(instance=sf_instance, session_id=session_id)

# app = FastAPI()


# @app.middleware("http")
# async def add_security_headers(request: Request, call_next):
#     response = await call_next(request)
#     response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
#     response.headers["X-Frame-Options"] = "ALLOWALL"
#     return response


# # Allow CORS requests from any domain
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )




# @app.get("/favicon.ico")
# async def favicon():
#     return HTMLResponse("")  # or serve a real favicon if you have one


# app.mount("/static", StaticFiles(directory="static"), name="static")

# templates = Jinja2Templates(directory="static")
# # Configure Llama index settings
# Settings.llm = HuggingFaceLLM(
#     model_name="meta-llama/Meta-Llama-3-8B-Instruct",
#     tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
#     context_window=3000,
#     token=os.getenv("HF_TOKEN"),
#     max_new_tokens=512,
#     generate_kwargs={"temperature": 0.1},
# )

# Settings.embed_model = HuggingFaceEmbedding(
#     model_name="BAAI/bge-small-en-v1.5"
# )

# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'

# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)
# chat_history = []
# current_chat_history = []
# def data_ingestion_from_directory():
#     documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
#     storage_context = StorageContext.from_defaults()
#     index = VectorStoreIndex.from_documents(documents)
#     index.storage_context.persist(persist_dir=PERSIST_DIR)

# def initialize():
#     start_time = time.time()
#     data_ingestion_from_directory()  # Process PDF ingestion at startup
#     print(f"Data ingestion time: {time.time() - start_time} seconds")
# def split_name(full_name):
#     # Split the name by spaces
#     words = full_name.strip().split()
    
#     # Logic for determining first name and last name
#     if len(words) == 1:
#         first_name = ''
#         last_name = words[0]
#     elif len(words) == 2:
#         first_name = words[0]
#         last_name = words[1]
#     else:
#         first_name = words[0]
#         last_name = ' '.join(words[1:])
    
#     return first_name, last_name

# initialize()  # Run initialization tasks


# def handle_query(query):
#     chat_text_qa_msgs = [
#         (
#             "user",
#             """
#             You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only       
#             {context_str}
#             Question:
#             {query_str}
#             """
#         )
#     ]
#     text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
#     storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
#     index = load_index_from_storage(storage_context)
#     context_str = ""
#     for past_query, response in reversed(current_chat_history):
#         if past_query.strip():
#             context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    
#     query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
#     answer = query_engine.query(query)

#     if hasattr(answer, 'response'):
#         response=answer.response
#     elif isinstance(answer, dict) and 'response' in answer:
#         response =answer['response']
#     else:
#         response ="Sorry, I couldn't find an answer."
#     current_chat_history.append((query, response))
#     return response
# @app.get("/ch/{id}", response_class=HTMLResponse)
# async def load_chat(request: Request, id: str):
#     return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# # Route to save chat history
# @app.post("/hist/")
# async def save_chat_history(history: dict):
#     # Check if 'userId' is present in the incoming dictionary
#     user_id = history.get('userId')
#     print(user_id)

#     # Ensure user_id is defined before proceeding
#     if user_id is None:
#         return {"error": "userId is required"}, 400

#     # Construct the chat history string
#     hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
#     hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
#     print(hist)

#     # Get the summarized result from the client model
#     result = hist

#     try:
#         sf.Lead.update(user_id, {'Description': result})
#     except Exception as e:
#         return {"error": f"Failed to update lead: {str(e)}"}, 500
    
#     return {"summary": result, "message": "Chat history saved"}
# @app.post("/webhook")
# async def receive_form_data(request: Request):
#     form_data = await request.json()
#     # Log in to Salesforce
#     first_name, last_name = split_name(form_data['name'])
#     data = {
#     'FirstName': first_name,
#     'LastName': last_name,
#     'Description': 'hii',  # Static description
#     'Company': form_data['company'],  # Assuming company is available in form_data
#     'Phone': form_data['phone'].strip(),  # Phone from form data
#     'Email': form_data['email'],  # Email from form data
#     }
#     a=sf.Lead.create(data)
#     # Generate a unique ID (for tracking user)
#     unique_id = a['id']
    
#     # Here you can do something with form_data like saving it to a database
#     print("Received form data:", form_data)
    
#     # Send back the unique id to the frontend
#     return JSONResponse({"id": unique_id})

# @app.post("/chat/")
# async def chat(request: MessageRequest):
#     message = request.message  # Access the message from the request body
#     response = handle_query(message)  # Process the message
#     message_data = {
#         "sender": "User",
#         "message": message,
#         "response": response,
#         "timestamp": datetime.datetime.now().isoformat()
#     }
#     chat_history.append(message_data)
#     return {"response": response}
# @app.get("/")
# def read_root():
#     return {"message": "Welcome to the API"}

import os
import datetime
import json
import logging
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from simple_salesforce import Salesforce, SalesforceLogin
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate
from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.core import load_index_from_storage
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.langchain import LangChainLLM  # Added for Groq integration

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
    message: str

# Initialize FastAPI app
app = FastAPI()

# Allow CORS (restrict origins in production)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # TODO: Restrict to specific origins in production
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Mount static files and templates
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")

# Validate environment variables
required_env_vars = ["CHATGROQ_API_KEY", "username", "password", "security_token", "domain", "HF_TOKEN"]
for var in required_env_vars:
    if not os.getenv(var):
        logger.error(f"Environment variable {var} is not set")
        raise ValueError(f"Environment variable {var} is not set")

# Initialize Groq model
GROQ_API_KEY = os.getenv("CHATGROQ_API_KEY")
GROQ_MODEL = "llama3-8b-8192"
try:
    groq_llm = ChatGroq(
        model_name=GROQ_MODEL,
        api_key=GROQ_API_KEY,
        temperature=0.1,
        max_tokens=50
    )
except Exception as e:
    logger.error(f"Failed to initialize Groq model: {e}")
    raise HTTPException(status_code=500, detail="Failed to initialize Groq model")

# Configure LlamaIndex settings
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
Settings.llm = LangChainLLM(llm=groq_llm)  # Use Groq LLM for LlamaIndex

# Salesforce credentials
username = os.getenv("username")
password = os.getenv("password")
security_token = os.getenv("security_token")
domain = os.getenv("domain")  # e.g., 'test' for sandbox

# Initialize Salesforce connection
sf = None
try:
    session_id, sf_instance = SalesforceLogin(
        username=username, password=password, security_token=security_token, domain=domain
    )
    sf = Salesforce(instance=sf_instance, session_id=session_id)
    logger.info("Salesforce connection established")
except Exception as e:
    logger.warning(f"Failed to connect to Salesforce: {e}. Continuing without Salesforce integration.")

# Chat history
chat_history = []
current_chat_history = []
MAX_HISTORY_SIZE = 100

# Directories for data ingestion and storage
PDF_DIRECTORY = "data"
PERSIST_DIR = "db"

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

def data_ingestion_from_directory():
    """Ingest documents from PDF_DIRECTORY and store embeddings in PERSIST_DIR."""
    try:
        documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
        if not documents:
            logger.warning("No documents found in PDF_DIRECTORY")
            return False
        storage_context = StorageContext.from_defaults()
        index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
        index.storage_context.persist(persist_dir=PERSIST_DIR)
        logger.info("Data ingestion and embedding storage completed successfully")
        return True
    except Exception as e:
        logger.error(f"Error during data ingestion: {e}")
        raise HTTPException(status_code=500, detail=f"Data ingestion failed: {str(e)}")

def initialize():
    """Initialize the application by ingesting data and setting up embeddings."""
    try:
        if not data_ingestion_from_directory():
            logger.info("No documents to ingest, proceeding with empty index")
    except Exception as e:
        logger.error(f"Initialization failed: {e}")
        raise HTTPException(status_code=500, detail="Initialization failed")

# Run initialization
initialize()

def handle_query(query: str) -> str:
    """Handle user query by retrieving relevant documents and querying Groq LLM."""
    # Prepare context from chat history
    chat_context = ""
    for past_query, response in reversed(current_chat_history[-10:]):
        if past_query.strip():
            chat_context += f"User: {past_query}\nBot: {response}\n"

    # Load vector index and retrieve relevant documents
    try:
        storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
        index = load_index_from_storage(storage_context)
        query_engine = index.as_query_engine(similarity_top_k=2)
        retrieved = query_engine.query(query)
        doc_context = retrieved.response if hasattr(retrieved, 'response') else "No relevant information found."
        logger.info(f"Retrieved context for query '{query}': {doc_context[:100]}...")
    except Exception as e:
        logger.error(f"Error retrieving documents: {e}")
        doc_context = "Failed to retrieve relevant information."

    # Construct prompt for Redferns Tech chatbot
    prompt_template = ChatPromptTemplate.from_messages([
        ("system", """
        You are Clara, a chatbot for Redferns Tech. Provide accurate, professional answers in 10-15 words.
        Use the provided document context and chat history to inform your response.
        If you don't know the answer, politely say: "I'm sorry, I don't have the information to answer that."

        Document Context:
        {doc_context}

        Chat History:
        {chat_context}

        Question:
        {query}
        """),
    ])
    prompt = prompt_template.format(doc_context=doc_context, chat_context=chat_context, query=query)

    # Query Groq model
    try:
        response = groq_llm.invoke(prompt)
        response_text = response.content.strip()
        if not response_text or response_text.lower() == "unknown":
            response_text = "I'm sorry, I don't have the information to answer that."
    except Exception as e:
        logger.error(f"Error querying Groq API: {e}")
        response_text = "I'm sorry, I don't have the information to answer that."

    # Update chat history
    if len(current_chat_history) >= MAX_HISTORY_SIZE:
        current_chat_history.pop(0)
    current_chat_history.append((query, response_text))
    return response_text

@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    """Serve the chat interface for a specific user ID."""
    return templates.TemplateResponse("index.html", {"request": request, "user_id": id})

@app.post("/hist/")
async def save_chat_history(history: dict):
    """Save chat history to Salesforce."""
    if not sf:
        logger.error("Salesforce integration is disabled")
        return JSONResponse({"error": "Salesforce integration is unavailable"}, status_code=503)

    user_id = history.get('userId')
    if not user_id:
        logger.error("userId is missing in history request")
        return JSONResponse({"error": "userId is required"}, status_code=400)

    hist = ''.join([f"{entry['sender']}: {entry['message']}\n" for entry in history['history']])
    summary_prompt = f"Summarize user interests from this conversation:\n{hist}"

    try:
        sf.Lead.update(user_id, {'Description': summary_prompt})
        logger.info(f"Chat history updated for user {user_id}")
        return {"summary": summary_prompt, "message": "Chat history saved"}
    except Exception as e:
        logger.error(f"Failed to update lead: {e}")
        return JSONResponse({"error": f"Failed to update lead: {str(e)}"}, status_code=500)

@app.post("/webhook")
async def receive_form_data(request: Request):
    """Create a Salesforce lead from form data."""
    if not sf:
        logger.error("Salesforce integration is disabled")
        return JSONResponse({"error": "Salesforce integration is unavailable"}, status_code=503)

    try:
        form_data = await request.json()
    except json.JSONDecodeError:
        logger.error("Invalid JSON in webhook request")
        return JSONResponse({"error": "Invalid JSON"}, status_code=400)

    first_name, last_name = split_name(form_data.get('name', ''))
    data = {
        'FirstName': first_name,
        'LastName': last_name,
        'Description': 'Lead created via webhook',
        'Company': form_data.get('company', ''),
        'Phone': form_data.get('phone', '').strip(),
        'Email': form_data.get('email', ''),
    }

    try:
        result = sf.Lead.create(data)
        unique_id = result['id']
        logger.info(f"Lead created with ID {unique_id}")
        return JSONResponse({"id": unique_id})
    except Exception as e:
        logger.error(f"Failed to create lead: {e}")
        return JSONResponse({"error": f"Failed to create lead: {str(e)}"}, status_code=500)

@app.post("/chat/")
async def chat(request: MessageRequest):
    """Handle chat messages and return responses."""
    message = request.message.strip()
    if not message:
        return JSONResponse({"error": "Message cannot be empty"}, status_code=400)

    response = handle_query(message)
    message_data = {
        "sender": "User",
        "message": message,
        "response": response,
        "timestamp": datetime.datetime.now().isoformat()
    }
    if len(chat_history) >= MAX_HISTORY_SIZE:
        chat_history.pop(0)
    chat_history.append(message_data)
    logger.info(f"Chat message processed: {message}")
    return {"response": response}

@app.get("/health")
async def health_check():
    """Check the health of the application."""
    try:
        storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
        index = load_index_from_storage(storage_context)
        logger.info("Vector index loaded successfully")
        return {"status": "healthy", "pdf_ingestion": "successful"}
    except Exception as e:
        logger.error(f"Health check failed: {e}")
        return {"status": "unhealthy", "error": str(e)}

@app.get("/")
async def read_root():
    """Root endpoint for the API."""
    return {"message": "Welcome to the Redferns Tech Chatbot API"}

def split_name(full_name: str) -> tuple:
    """Split a full name into first and last names."""
    words = full_name.strip().split()
    return (words[0], ' '.join(words[1:])) if words else ('', '')