Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,8 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
-
import
|
7 |
-
from agent import ClaudeAgent
|
8 |
from dotenv import load_dotenv
|
9 |
-
import random
|
10 |
|
11 |
# Load environment variables
|
12 |
load_dotenv()
|
@@ -21,6 +19,17 @@ else:
|
|
21 |
# --- Constants ---
|
22 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
25 |
"""
|
26 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
@@ -43,7 +52,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
43 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
44 |
try:
|
45 |
# agent = BasicAgent()
|
46 |
-
agent =
|
47 |
except Exception as e:
|
48 |
print(f"Error instantiating agent: {e}")
|
49 |
return f"Error initializing agent: {e}", None
|
@@ -76,42 +85,19 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
76 |
results_log = []
|
77 |
answers_payload = []
|
78 |
print(f"Running agent on {len(questions_data)} questions...")
|
79 |
-
|
80 |
-
# Process with rate limiting to avoid Anthropic API limits
|
81 |
-
for i, item in enumerate(questions_data):
|
82 |
task_id = item.get("task_id")
|
83 |
question_text = item.get("question")
|
84 |
if not task_id or question_text is None:
|
85 |
print(f"Skipping item with missing task_id or question: {item}")
|
86 |
continue
|
87 |
-
|
88 |
-
# Add a progress indicator
|
89 |
-
print(f"Processing question {i+1}/{len(questions_data)}: Task ID {task_id}")
|
90 |
-
|
91 |
try:
|
92 |
-
# Add a delay between requests to respect rate limits
|
93 |
-
if i > 0:
|
94 |
-
# Random delay between 2-5 seconds
|
95 |
-
sleep_time = random.uniform(2, 5)
|
96 |
-
print(f"Waiting {sleep_time:.2f} seconds before next question...")
|
97 |
-
time.sleep(sleep_time)
|
98 |
-
|
99 |
-
# Process the question
|
100 |
submitted_answer = agent(question_text)
|
101 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
102 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
103 |
-
|
104 |
-
# Print answer for monitoring
|
105 |
-
print(f"Answer for task {task_id}: {submitted_answer[:100]}..." if len(submitted_answer) > 100 else f"Answer: {submitted_answer}")
|
106 |
except Exception as e:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# If this was a rate limit error, add a longer cooldown period
|
111 |
-
if "rate_limit" in str(e).lower():
|
112 |
-
cool_down = 60 # 1 minute cooldown
|
113 |
-
print(f"Rate limit detected. Cooling down for {cool_down} seconds...")
|
114 |
-
time.sleep(cool_down)
|
115 |
|
116 |
if not answers_payload:
|
117 |
print("Agent did not produce any answers to submit.")
|
@@ -168,18 +154,17 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
168 |
|
169 |
# --- Build Gradio Interface using Blocks ---
|
170 |
with gr.Blocks() as demo:
|
171 |
-
gr.Markdown("#
|
172 |
gr.Markdown(
|
173 |
"""
|
174 |
**Instructions:**
|
175 |
-
1.
|
176 |
-
2.
|
177 |
-
3.
|
178 |
-
|
179 |
-
**
|
180 |
-
|
181 |
-
-
|
182 |
-
- The entire process may take several minutes to complete
|
183 |
"""
|
184 |
)
|
185 |
|
@@ -188,6 +173,7 @@ with gr.Blocks() as demo:
|
|
188 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
189 |
|
190 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
191 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
192 |
|
193 |
run_button.click(
|
@@ -216,5 +202,5 @@ if __name__ == "__main__":
|
|
216 |
|
217 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
218 |
|
219 |
-
print("Launching Gradio Interface for
|
220 |
demo.launch(debug=True, share=False)
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from agent import GeminiAgent
|
|
|
7 |
from dotenv import load_dotenv
|
|
|
8 |
|
9 |
# Load environment variables
|
10 |
load_dotenv()
|
|
|
19 |
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
|
22 |
+
# --- Basic Agent Definition ---
|
23 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
24 |
+
class BasicAgent:
|
25 |
+
def __init__(self):
|
26 |
+
print("BasicAgent initialized.")
|
27 |
+
def __call__(self, question: str) -> str:
|
28 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
+
fixed_answer = "This is a default answer."
|
30 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
31 |
+
return fixed_answer
|
32 |
+
|
33 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
34 |
"""
|
35 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
52 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
53 |
try:
|
54 |
# agent = BasicAgent()
|
55 |
+
agent = GeminiAgent()
|
56 |
except Exception as e:
|
57 |
print(f"Error instantiating agent: {e}")
|
58 |
return f"Error initializing agent: {e}", None
|
|
|
85 |
results_log = []
|
86 |
answers_payload = []
|
87 |
print(f"Running agent on {len(questions_data)} questions...")
|
88 |
+
for item in questions_data:
|
|
|
|
|
89 |
task_id = item.get("task_id")
|
90 |
question_text = item.get("question")
|
91 |
if not task_id or question_text is None:
|
92 |
print(f"Skipping item with missing task_id or question: {item}")
|
93 |
continue
|
|
|
|
|
|
|
|
|
94 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
submitted_answer = agent(question_text)
|
96 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
97 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
98 |
except Exception as e:
|
99 |
+
print(f"Error running agent on task {task_id}: {e}")
|
100 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if not answers_payload:
|
103 |
print("Agent did not produce any answers to submit.")
|
|
|
154 |
|
155 |
# --- Build Gradio Interface using Blocks ---
|
156 |
with gr.Blocks() as demo:
|
157 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
158 |
gr.Markdown(
|
159 |
"""
|
160 |
**Instructions:**
|
161 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
162 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
163 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
164 |
+
---
|
165 |
+
**Disclaimers:**
|
166 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
167 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
|
|
168 |
"""
|
169 |
)
|
170 |
|
|
|
173 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
174 |
|
175 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
176 |
+
# Removed max_rows=10 from DataFrame constructor
|
177 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
178 |
|
179 |
run_button.click(
|
|
|
202 |
|
203 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
204 |
|
205 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
206 |
demo.launch(debug=True, share=False)
|