File size: 14,169 Bytes
dfd19f5 524e312 c1d3919 06293e9 dfd19f5 c1d3919 09c80e8 34606bb 66a0e23 06293e9 c1d3919 09c80e8 06293e9 66a0e23 dfd19f5 66a0e23 dfd19f5 c1d3919 dfd19f5 34606bb 06293e9 66a0e23 06293e9 66a0e23 06293e9 fa599aa 06293e9 fa599aa 06293e9 fa599aa 06293e9 fa599aa 06293e9 fa599aa 06293e9 fa599aa 06293e9 fa599aa 06293e9 fa599aa dfd19f5 524e312 dfd19f5 b9a4880 dfd19f5 524e312 dfd19f5 09c80e8 dfd19f5 09c80e8 524e312 09c80e8 06293e9 d367dae 09c80e8 524e312 09c80e8 06293e9 09c80e8 524e312 09c80e8 06293e9 09c80e8 524e312 09c80e8 06293e9 09c80e8 06293e9 09c80e8 06293e9 09c80e8 06293e9 524e312 06293e9 09c80e8 06293e9 09c80e8 06293e9 09c80e8 06293e9 09c80e8 dfd19f5 06293e9 09c80e8 06293e9 34606bb 06293e9 09c80e8 06293e9 09c80e8 06293e9 09c80e8 06293e9 dfd19f5 09c80e8 06293e9 09c80e8 06293e9 09c80e8 06293e9 09c80e8 06293e9 09c80e8 06293e9 09c80e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""
agent.py - Claude implementation for GAIA challenge
-----------------------------------------------------------
A simplified implementation with direct litellm access to Anthropic's Claude
"""
import base64
import mimetypes
import os
import re
import tempfile
import time
import random
from typing import List, Dict, Any, Optional
import requests
from urllib.parse import urlparse
from smolagents import CodeAgent, DuckDuckGoSearchTool, PythonInterpreterTool, tool
# --------------------------------------------------------------------------- #
# Constants & helpers
# --------------------------------------------------------------------------- #
DEFAULT_API_URL = os.getenv(
"GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space"
)
FILE_TAG = re.compile(r"<file:([^>]+)>") # <file:xyz>
def _download_file(file_id: str) -> bytes:
"""Download the attachment for a GAIA task."""
url = f"{DEFAULT_API_URL}/files/{file_id}"
resp = requests.get(url, timeout=30)
resp.raise_for_status()
return resp.content
# --------------------------------------------------------------------------- #
# Direct Claude model implementation with litellm
# --------------------------------------------------------------------------- #
class DirectClaudeModel:
"""
Direct interface to Claude via litellm that works with smolagents
This avoids the message format issues by keeping things very simple
"""
def __init__(
self,
api_key: Optional[str] = None,
temperature: float = 0.1
):
"""Initialize the Claude model"""
self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
if not self.api_key:
raise ValueError("No Anthropic API key provided")
self.temperature = temperature
self.model_name = "anthropic/claude-3-5-sonnet-20240620"
print(f"Initialized DirectClaudeModel with {self.model_name}")
# Sleep random amount to avoid race conditions with many queries
time.sleep(random.uniform(1, 3))
def __call__(self, prompt: str, **kwargs) -> str:
"""
Simple call method that works with smolagents
Args:
prompt: The user prompt
**kwargs: Additional parameters (ignored)
Returns:
Claude's response as a string
"""
# Import here to avoid any circular imports
from litellm import completion
# Use a simple format: system message + user message
messages = [
{
"role": "system",
"content": """You are a concise, highly accurate assistant specialized in solving challenges.
Your answers should be precise, direct, and exactly match the expected format.
All answers are graded by exact string match, so format carefully!"""
},
{
"role": "user",
"content": prompt
}
]
# Add delay to avoid rate limits
time.sleep(random.uniform(0.5, 2.0))
try:
# Make API call with simple format
response = completion(
model=self.model_name,
messages=messages,
temperature=self.temperature,
max_tokens=1024,
api_key=self.api_key
)
# Extract and return the text content only
return response.choices[0].message.content
except Exception as e:
# If it's a rate limit error, wait and retry
if "rate_limit" in str(e).lower():
print(f"Rate limit hit, waiting 30 seconds: {e}")
time.sleep(30)
return self.__call__(prompt, **kwargs)
else:
print(f"Error: {str(e)}")
raise
# --------------------------------------------------------------------------- #
# Tools section - All tools used by the agent
# --------------------------------------------------------------------------- #
@tool
def gaia_file_reader(file_id: str) -> str:
"""
Download a GAIA attachment and return its contents.
Args:
file_id: The identifier of the file to download from GAIA API.
Returns:
The content of the file as a string (text files) or base64-encoded (binary files).
"""
try:
raw = _download_file(file_id)
mime = mimetypes.guess_type(file_id)[0] or "application/octet-stream"
if mime.startswith("text") or mime in ("application/json",):
return raw.decode(errors="ignore")
return base64.b64encode(raw).decode()
except Exception as exc:
return f"ERROR downloading {file_id}: {exc}"
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save content to a temporary file and return the path.
Args:
content: The content to save to the file.
filename: Optional filename, will generate a random name if not provided.
Returns:
Path to the saved file.
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
with open(filepath, 'w') as f:
f.write(content)
return f"File saved to {filepath}."
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer questions about it.
Args:
file_path: Path to the CSV file to analyze.
query: A question or instruction about what to analyze in the file.
Returns:
Analysis results as text.
"""
try:
import pandas as pd
df = pd.read_csv(file_path)
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas is not installed."
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer questions about it.
Args:
file_path: Path to the Excel file to analyze.
query: A question or instruction about what to analyze in the file.
Returns:
Analysis results as text.
"""
try:
import pandas as pd
df = pd.read_excel(file_path)
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas and openpyxl are not installed."
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url: The URL to download from.
filename: Optional filename, will generate one based on URL if not provided.
Returns:
Path to the downloaded file.
"""
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
# Generate a random name if we couldn't extract one
import uuid
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can now process this file."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using pytesseract (if available).
Args:
image_path: Path to the image file to extract text from.
Returns:
Extracted text from the image.
"""
try:
# Try to import pytesseract
import pytesseract
from PIL import Image
# Open the image
image = Image.open(image_path)
# Extract text
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except ImportError:
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
except Exception as e:
return f"Error extracting text from image: {str(e)}"
# --------------------------------------------------------------------------- #
# ClaudeAgent - Main class for GAIA challenge
# --------------------------------------------------------------------------- #
class ClaudeAgent:
"""A simplified Claude agent for the GAIA challenge"""
def __init__(self):
"""Initialize the agent with Claude"""
try:
# Get API key
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
raise ValueError("ANTHROPIC_API_KEY environment variable not found")
print("β
Initializing ClaudeAgent")
# Create the model with direct implementation
model = DirectClaudeModel(api_key=api_key, temperature=0.1)
# Set up tools
tools = [
DuckDuckGoSearchTool(),
PythonInterpreterTool(),
save_and_read_file,
analyze_csv_file,
analyze_excel_file,
gaia_file_reader,
download_file_from_url,
extract_text_from_image
]
# Create the CodeAgent
self.agent = CodeAgent(
tools=tools,
model=model,
additional_authorized_imports=["pandas", "numpy", "json", "re", "math"],
executor_type="local",
verbosity_level=2
)
print("Agent initialized successfully")
except Exception as e:
print(f"Error initializing ClaudeAgent: {e}")
raise
def __call__(self, question: str) -> str:
"""Process a question and return the answer"""
try:
print(f"Processing question: {question[:100]}..." if len(question) > 100 else question)
# Add a small delay between questions
time.sleep(random.uniform(1.0, 3.0))
# Handle file references
file_match = re.search(r"<file:([^>]+)>", question)
if file_match:
file_id = file_match.group(1)
print(f"Detected file: {file_id}")
# Download file
try:
file_content = _download_file(file_id)
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, file_id)
with open(file_path, 'wb') as f:
f.write(file_content)
# Remove file tag from question
clean_question = re.sub(r"<file:[^>]+>", "", question).strip()
# Build prompt with file context
prompt = f"""
Question: {clean_question}
There is a file available at path: {file_path}
Use appropriate tools to analyze this file if needed.
Answer the question directly and precisely.
"""
except Exception as e:
print(f"Error downloading file: {e}")
prompt = question
else:
# Handle reversed text separately
if question.startswith(".") or ".rewsna eht sa" in question:
prompt = f"""
This question is in reversed text. Here's the normal version:
{question[::-1]}
Answer the question directly and precisely.
"""
else:
prompt = question
# Execute agent with prompt
answer = self.agent.run(prompt)
# Clean up response
answer = self._clean_answer(answer)
print(f"Generated answer: {answer}")
return answer
except Exception as e:
print(f"Error: {str(e)}")
return f"Error processing question: {str(e)}"
def _clean_answer(self, answer: any) -> str:
"""Clean up the answer for exact matching"""
if not isinstance(answer, str):
return str(answer)
# Normalize spacing
answer = answer.strip()
# Remove common prefixes
prefixes = [
"The answer is ", "Answer: ", "Final answer: ",
"The result is ", "Based on the information provided, "
]
for prefix in prefixes:
if answer.startswith(prefix):
answer = answer[len(prefix):].strip()
# Remove quotes
if (answer.startswith('"') and answer.endswith('"')) or (
answer.startswith("'") and answer.endswith("'")
):
answer = answer[1:-1].strip()
return answer |