File size: 14,169 Bytes
dfd19f5
524e312
c1d3919
06293e9
dfd19f5
 
 
 
c1d3919
 
09c80e8
34606bb
66a0e23
06293e9
c1d3919
09c80e8
06293e9
66a0e23
dfd19f5
 
66a0e23
dfd19f5
 
 
 
c1d3919
dfd19f5
 
 
 
 
 
 
 
34606bb
06293e9
66a0e23
06293e9
66a0e23
06293e9
 
fa599aa
 
 
06293e9
fa599aa
06293e9
fa599aa
06293e9
 
 
 
 
fa599aa
06293e9
fa599aa
06293e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa599aa
 
06293e9
 
 
 
 
 
fa599aa
06293e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa599aa
dfd19f5
524e312
dfd19f5
b9a4880
dfd19f5
 
524e312
 
 
 
 
 
 
dfd19f5
 
 
 
 
 
 
09c80e8
dfd19f5
 
09c80e8
 
524e312
 
 
 
 
 
 
 
 
 
09c80e8
 
 
 
 
 
 
 
 
 
06293e9
d367dae
09c80e8
 
524e312
 
 
 
 
 
 
 
 
 
09c80e8
 
 
 
 
 
 
 
 
 
 
06293e9
09c80e8
 
 
 
 
524e312
 
 
 
 
 
 
 
 
 
09c80e8
 
 
 
 
 
 
 
 
 
 
06293e9
09c80e8
 
 
524e312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c80e8
06293e9
09c80e8
 
06293e9
09c80e8
 
06293e9
09c80e8
 
 
 
 
 
06293e9
 
 
 
 
 
 
 
 
 
 
 
524e312
 
 
06293e9
09c80e8
06293e9
 
 
 
 
 
 
09c80e8
06293e9
 
 
09c80e8
06293e9
09c80e8
 
dfd19f5
06293e9
09c80e8
06293e9
34606bb
06293e9
 
09c80e8
06293e9
09c80e8
 
 
06293e9
09c80e8
06293e9
dfd19f5
09c80e8
 
 
 
 
 
 
 
 
 
06293e9
 
 
 
 
 
 
09c80e8
06293e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c80e8
 
06293e9
 
09c80e8
06293e9
 
 
 
09c80e8
06293e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c80e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
"""
agent.py - Claude implementation for GAIA challenge
-----------------------------------------------------------
A simplified implementation with direct litellm access to Anthropic's Claude
"""

import base64
import mimetypes
import os
import re
import tempfile
import time
import random
from typing import List, Dict, Any, Optional
import requests
from urllib.parse import urlparse

from smolagents import CodeAgent, DuckDuckGoSearchTool, PythonInterpreterTool, tool

# --------------------------------------------------------------------------- #
# Constants & helpers
# --------------------------------------------------------------------------- #
DEFAULT_API_URL = os.getenv(
    "GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space"
)
FILE_TAG = re.compile(r"<file:([^>]+)>")  # <file:xyz>

def _download_file(file_id: str) -> bytes:
    """Download the attachment for a GAIA task."""
    url = f"{DEFAULT_API_URL}/files/{file_id}"
    resp = requests.get(url, timeout=30)
    resp.raise_for_status()
    return resp.content

# --------------------------------------------------------------------------- #
# Direct Claude model implementation with litellm
# --------------------------------------------------------------------------- #
class DirectClaudeModel:
    """
    Direct interface to Claude via litellm that works with smolagents
    This avoids the message format issues by keeping things very simple
    """
    
    def __init__(
        self, 
        api_key: Optional[str] = None,
        temperature: float = 0.1
    ):
        """Initialize the Claude model"""
        self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
        if not self.api_key:
            raise ValueError("No Anthropic API key provided")
            
        self.temperature = temperature
        self.model_name = "anthropic/claude-3-5-sonnet-20240620"
        
        print(f"Initialized DirectClaudeModel with {self.model_name}")
        
        # Sleep random amount to avoid race conditions with many queries
        time.sleep(random.uniform(1, 3))
        
    def __call__(self, prompt: str, **kwargs) -> str:
        """
        Simple call method that works with smolagents
        
        Args:
            prompt: The user prompt
            **kwargs: Additional parameters (ignored)
            
        Returns:
            Claude's response as a string
        """
        # Import here to avoid any circular imports
        from litellm import completion
        
        # Use a simple format: system message + user message
        messages = [
            {
                "role": "system",
                "content": """You are a concise, highly accurate assistant specialized in solving challenges.
Your answers should be precise, direct, and exactly match the expected format.
All answers are graded by exact string match, so format carefully!"""
            },
            {
                "role": "user",
                "content": prompt
            }
        ]
        
        # Add delay to avoid rate limits
        time.sleep(random.uniform(0.5, 2.0))
        
        try:
            # Make API call with simple format
            response = completion(
                model=self.model_name,
                messages=messages,
                temperature=self.temperature,
                max_tokens=1024,
                api_key=self.api_key
            )
            
            # Extract and return the text content only
            return response.choices[0].message.content
        
        except Exception as e:
            # If it's a rate limit error, wait and retry
            if "rate_limit" in str(e).lower():
                print(f"Rate limit hit, waiting 30 seconds: {e}")
                time.sleep(30)
                return self.__call__(prompt, **kwargs)
            else:
                print(f"Error: {str(e)}")
                raise

# --------------------------------------------------------------------------- #
# Tools section - All tools used by the agent
# --------------------------------------------------------------------------- #
@tool
def gaia_file_reader(file_id: str) -> str:
    """
    Download a GAIA attachment and return its contents.
    
    Args:
        file_id: The identifier of the file to download from GAIA API.
        
    Returns:
        The content of the file as a string (text files) or base64-encoded (binary files).
    """
    try:
        raw = _download_file(file_id)
        mime = mimetypes.guess_type(file_id)[0] or "application/octet-stream"
        if mime.startswith("text") or mime in ("application/json",):
            return raw.decode(errors="ignore")
        return base64.b64encode(raw).decode()
    except Exception as exc:
        return f"ERROR downloading {file_id}: {exc}"

@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save content to a temporary file and return the path.
    
    Args:
        content: The content to save to the file.
        filename: Optional filename, will generate a random name if not provided.
        
    Returns:
        Path to the saved file.
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)
    
    with open(filepath, 'w') as f:
        f.write(content)
    
    return f"File saved to {filepath}."

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer questions about it.
    
    Args:
        file_path: Path to the CSV file to analyze.
        query: A question or instruction about what to analyze in the file.
        
    Returns:
        Analysis results as text.
    """
    try:
        import pandas as pd
        df = pd.read_csv(file_path)
        
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas is not installed."
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer questions about it.
    
    Args:
        file_path: Path to the Excel file to analyze.
        query: A question or instruction about what to analyze in the file.
        
    Returns:
        Analysis results as text.
    """
    try:
        import pandas as pd
        df = pd.read_excel(file_path)
        
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    
    Args:
        url: The URL to download from.
        filename: Optional filename, will generate one based on URL if not provided.
        
    Returns:
        Path to the downloaded file.
    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                # Generate a random name if we couldn't extract one
                import uuid
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"
        
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)
        
        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()
        
        # Save the file
        with open(filepath, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        return f"File downloaded to {filepath}. You can now process this file."
    except Exception as e:
        return f"Error downloading file: {str(e)}"

@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extract text from an image using pytesseract (if available).
    
    Args:
        image_path: Path to the image file to extract text from.
        
    Returns:
        Extracted text from the image.
    """
    try:
        # Try to import pytesseract
        import pytesseract
        from PIL import Image
        
        # Open the image
        image = Image.open(image_path)
        
        # Extract text
        text = pytesseract.image_to_string(image)
        
        return f"Extracted text from image:\n\n{text}"
    except ImportError:
        return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"

# --------------------------------------------------------------------------- #
# ClaudeAgent - Main class for GAIA challenge
# --------------------------------------------------------------------------- #
class ClaudeAgent:
    """A simplified Claude agent for the GAIA challenge"""
    
    def __init__(self):
        """Initialize the agent with Claude"""
        try:
            # Get API key
            api_key = os.getenv("ANTHROPIC_API_KEY")
            if not api_key:
                raise ValueError("ANTHROPIC_API_KEY environment variable not found")
                
            print("βœ… Initializing ClaudeAgent")
            
            # Create the model with direct implementation
            model = DirectClaudeModel(api_key=api_key, temperature=0.1)
            
            # Set up tools
            tools = [
                DuckDuckGoSearchTool(),
                PythonInterpreterTool(),
                save_and_read_file,
                analyze_csv_file,
                analyze_excel_file,
                gaia_file_reader,
                download_file_from_url,
                extract_text_from_image
            ]
            
            # Create the CodeAgent
            self.agent = CodeAgent(
                tools=tools,
                model=model,
                additional_authorized_imports=["pandas", "numpy", "json", "re", "math"],
                executor_type="local",
                verbosity_level=2
            )
            
            print("Agent initialized successfully")
            
        except Exception as e:
            print(f"Error initializing ClaudeAgent: {e}")
            raise
    
    def __call__(self, question: str) -> str:
        """Process a question and return the answer"""
        try:
            print(f"Processing question: {question[:100]}..." if len(question) > 100 else question)
            
            # Add a small delay between questions
            time.sleep(random.uniform(1.0, 3.0))
            
            # Handle file references
            file_match = re.search(r"<file:([^>]+)>", question)
            if file_match:
                file_id = file_match.group(1)
                print(f"Detected file: {file_id}")
                
                # Download file
                try:
                    file_content = _download_file(file_id)
                    temp_dir = tempfile.gettempdir()
                    file_path = os.path.join(temp_dir, file_id)
                    
                    with open(file_path, 'wb') as f:
                        f.write(file_content)
                    
                    # Remove file tag from question
                    clean_question = re.sub(r"<file:[^>]+>", "", question).strip()
                    
                    # Build prompt with file context
                    prompt = f"""
Question: {clean_question}
There is a file available at path: {file_path}
Use appropriate tools to analyze this file if needed.
Answer the question directly and precisely.
"""
                except Exception as e:
                    print(f"Error downloading file: {e}")
                    prompt = question
            else:
                # Handle reversed text separately
                if question.startswith(".") or ".rewsna eht sa" in question:
                    prompt = f"""
This question is in reversed text. Here's the normal version:
{question[::-1]}
Answer the question directly and precisely.
"""
                else:
                    prompt = question
            
            # Execute agent with prompt
            answer = self.agent.run(prompt)
            
            # Clean up response
            answer = self._clean_answer(answer)
            
            print(f"Generated answer: {answer}")
            return answer
            
        except Exception as e:
            print(f"Error: {str(e)}")
            return f"Error processing question: {str(e)}"
    
    def _clean_answer(self, answer: any) -> str:
        """Clean up the answer for exact matching"""
        if not isinstance(answer, str):
            return str(answer)
        
        # Normalize spacing
        answer = answer.strip()
        
        # Remove common prefixes
        prefixes = [
            "The answer is ", "Answer: ", "Final answer: ", 
            "The result is ", "Based on the information provided, "
        ]
        
        for prefix in prefixes:
            if answer.startswith(prefix):
                answer = answer[len(prefix):].strip()
        
        # Remove quotes
        if (answer.startswith('"') and answer.endswith('"')) or (
            answer.startswith("'") and answer.endswith("'")
        ):
            answer = answer[1:-1].strip()
            
        return answer