File size: 18,071 Bytes
db155ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69d8b3b
db155ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274cae7
db155ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import gradio as gr
import json
import logging
from PIL import Image

from huggingface_hub import ModelCard, HfFileSystem # Keep ModelCard, HfFileSystem for add_custom_lora
from huggingface_hub import InferenceClient # Added for API inference
import copy
import random
import time
import re # Keep for add_custom_lora URL parsing and potentially trigger word finding

# --- Inference Client Setup ---
# It's recommended to load the API key from environment variables or Gradio secrets
HF_API_KEY = os.getenv("HF_API_KEY")
if not HF_API_KEY:
    # Try to get from Gradio secrets if running in a Space
    try:
        HF_API_KEY = gr.secrets.get("HF_API_KEY")
    except (AttributeError, KeyError):
        HF_API_KEY = None # Set to None if not found

if not HF_API_KEY:
    logging.warning("HF_API_KEY not found in environment variables or Gradio secrets. Inference API calls will likely fail.")
    # Optionally, raise an error or provide a default behavior
    # raise ValueError("Missing Hugging Face API Key (HF_API_KEY) for InferenceClient")
    client = None # Initialize client as None if no key
else:
    client = InferenceClient(provider="fal-ai", token=HF_API_KEY)
    # Note: Provider choice depends on where the target models are hosted/supported for inference.

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Removed diffusers model initialization block

MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

# Updated function signature: Removed width, height inputs
def update_selection(evt: gr.SelectData):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    # Use the repo ID directly as the model identifier for the API call
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co./{lora_repo}) ✨ (Model ID: `{lora_repo}`)"

    # Default width/height
    width = 1024
    height = 1024
    # Update width/height based on aspect ratio if defined
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        # else keep 1024x1024

    # Return updates for prompt, selection info, index, and width/height states
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        gr.update(value=width),
        gr.update(value=height),
    )

def run_lora(prompt, selected_index, current_seed, current_width, current_height):
    global client # Access the global client

    if client is None:
        raise gr.Error("InferenceClient could not be initialized. Missing HF_API_KEY.")

    if selected_index is None:
        raise gr.Error("You must select a LoRA/Model before proceeding.")

    # --- Hardcoded Defaults (Removed from UI) ---
    cfg_scale = 7.0
    steps = 30
    # lora_scale = 0.95 # Might not be applicable/used by API
    randomize_seed = True # Always randomize in this simplified version
    # Removed image_input_path, image_strength - No img2img in this version

    selected_lora = loras[selected_index]
    # The 'repo' field now directly serves as the model identifier for the API
    model_id = selected_lora["repo"]
    trigger_word = selected_lora.get("trigger_word", "") # Use .get for safety

    # --- Prompt Construction ---
    if trigger_word:
        trigger_position = selected_lora.get("trigger_position", "prepend") # Default prepend
        if trigger_position == "prepend":
            prompt_mash = f"{trigger_word} {prompt}"
        else: # Append
            prompt_mash = f"{prompt} {trigger_word}"
    else:
        prompt_mash = prompt

    # --- Seed Handling ---
    seed_to_use = current_seed # Use the state value by default
    if randomize_seed:
        seed_to_use = random.randint(0, MAX_SEED)
        # Optional: Keep timer if desired
        # with calculateDuration("Randomizing seed"):
        #     pass

    # --- API Call (Text-to-Image only) ---
    final_image = None
    try:
        with calculateDuration(f"API Inference (txt2img) for {model_id}"):
            print(f"Running Text-to-Image for Model: {model_id}")
            final_image = client.text_to_image(
                prompt=prompt_mash,
                model=model_id,
                guidance_scale=cfg_scale,
                num_inference_steps=steps,
                seed=seed_to_use,
                width=current_width, # Use width from state
                height=current_height, # Use height from state
                # lora_scale might need to be passed via 'parameters' if supported
                # parameters={"lora_scale": lora_scale}
            )

    except Exception as e:
        print(f"Error during API call: {e}")
        # Improved error message for common API key issues
        if "authorization" in str(e).lower() or "401" in str(e):
             raise gr.Error(f"Authorization error calling the Inference API. Please ensure your HF_API_KEY is valid and has the necessary permissions. Error: {e}")
        elif "model is currently loading" in str(e).lower() or "503" in str(e):
             raise gr.Error(f"Model '{model_id}' is currently loading or unavailable. Please try again in a few moments. Error: {e}")
        else:
            raise gr.Error(f"Failed to generate image using the API. Model: {model_id}. Error: {e}")

    # Return final image, the seed used, and hide progress bar
    return final_image, seed_to_use, gr.update(visible=False)


# Removed get_huggingface_safetensors function as we don't download safetensors

def parse_hf_link(link):
    """Parses a Hugging Face link or repo ID string."""
    if link.startswith("https://huggingface.co./"):
        link = link.replace("https://huggingface.co./", "")
    elif link.startswith("www.huggingface.co/"):
         link = link.replace("www.huggingface.co/", "")
    # Basic validation for "user/model" format
    if "/" not in link or len(link.split("/")) != 2:
        raise ValueError("Invalid Hugging Face repository ID format. Expected 'user/model'.")
    return link.strip()

def get_model_details(repo_id):
    """Fetches model card details (image, trigger word) if possible."""
    try:
        model_card = ModelCard.load(repo_id)
        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "") # Common key for trigger words
        # Try another common key if the first fails
        if not trigger_word:
             trigger_word = model_card.data.get("trigger_words", [""])[0]

        image_url = f"https://huggingface.co./{repo_id}/resolve/main/{image_path}" if image_path else None

        # Fallback: Check repo files for an image if not in card widget data
        if not image_url:
            fs = HfFileSystem()
            files = fs.ls(repo_id, detail=False)
            image_extensions = (".jpg", ".jpeg", ".png", ".webp")
            for file in files:
                 filename = file.split("/")[-1]
                 if filename.lower().endswith(image_extensions):
                     image_url = f"https://huggingface.co./{repo_id}/resolve/main/{filename}"
                     break # Take the first image found

        # Use repo name as title if not specified elsewhere
        title = model_card.data.get("model_display_name", repo_id.split('/')[-1]) # Example key, might vary

        return title, trigger_word, image_url
    except Exception as e:
        print(f"Could not fetch model card details for {repo_id}: {e}")
        # Fallback values
        return repo_id.split('/')[-1], "", None # Use repo name part as title


def add_custom_lora(custom_lora_input):
    global loras
    if not custom_lora_input:
        # Clear the custom LoRA section if input is empty
        return gr.update(visible=False, value=""), gr.update(visible=False), gr.update(), "", None, ""

    try:
        repo_id = parse_hf_link(custom_lora_input)
        print(f"Attempting to add custom model: {repo_id}")

        # Check if model already exists in the list
        existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo_id), None)

        if existing_item_index is not None:
            print(f"Model {repo_id} already exists in the list.")
            # Optionally re-select the existing one or just show info
            selected_lora = loras[existing_item_index]
            title = selected_lora.get('title', repo_id.split('/')[-1])
            image = selected_lora.get('image', None) # Use existing image if available
            trigger_word = selected_lora.get('trigger_word', '')
        else:
             # Fetch details for the new model
             title, trigger_word, image = get_model_details(repo_id)
             print(f"Adding new model: {repo_id}, Title: {title}, Trigger: '{trigger_word}', Image: {image}")
             new_item = {
                 "image": image, # Store image URL (can be None)
                 "title": title,
                 "repo": repo_id, # Store the repo ID used for API calls
                 # "weights": path, # No longer needed
                 "trigger_word": trigger_word # Store trigger word if found
             }
             loras.append(new_item)
             existing_item_index = len(loras) - 1 # Index of the newly added item

        # Generate HTML card for display
        card = f'''
        <div class="custom_lora_card">
          <span>Loaded custom model:</span>
          <div class="card_internal">
            {f'<img src="{image}" alt="{title} preview"/>' if image else '<div class="no-image">No Image</div>'}
            <div>
                <h3>{title}</h3>
                <small>Model ID: <code>{repo_id}</code><br></small>
                <small>{"Using trigger word: <code><b>"+trigger_word+"</code></b>" if trigger_word else "No specific trigger word found in card. Include if needed."}<br></small>
            </div>
          </div>
        </div>
        '''

        # Update the gallery to include the new item (or reflect potential changes if re-added)
        updated_gallery_items = [(item.get("image"), item.get("title", item["repo"].split('/')[-1])) for item in loras]

        # Update UI elements: show info card, show remove button, update gallery, clear selection info, set selected index, update prompt placeholder
        return (
            gr.update(visible=True, value=card),
            gr.update(visible=True),
            gr.Gallery(value=updated_gallery_items, selected_index=existing_item_index), # Select the added/found item
            f"### Selected: [{repo_id}](https://huggingface.co./{repo_id}) ✨ (Model ID: `{repo_id}`)", # Update selection info
            existing_item_index,
            gr.update(placeholder=f"Type a prompt for {title}") # Update prompt placeholder
        )

    except ValueError as e: # Catch parsing errors
        gr.Warning(f"Invalid Input: {e}")
        return gr.update(visible=True, value=f"Invalid input: {e}"), gr.update(visible=False), gr.update(), "", None, ""
    except Exception as e: # Catch other errors (e.g., network issues during card fetch)
        gr.Warning(f"Error adding custom model: {e}")
        # Show error in the info box, hide remove button, don't change gallery/selection
        return gr.update(visible=True, value=f"Error adding custom model: {e}"), gr.update(visible=False), gr.update(), "", None, ""


def remove_custom_lora():
    # This function might need adjustment if we want to remove the *last added* custom lora
    # For now, it just clears the display and selection related to custom loras.
    # It doesn't remove the item from the global `loras` list.
    return gr.update(visible=False, value=""), gr.update(visible=False), gr.update(selected_index=None), "", None, gr.update(value="") # Clear custom_lora textbox too

# run_lora.zerogpu = True # Removed as inference is remote

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em; align-items: center;}
.card_internal img{margin-right: 1em; height: 100%; width: auto; object-fit: cover;}
.card_internal .no-image { width: 100px; height: 100px; background-color: #eee; display: flex; align-items: center; justify-content: center; color: #aaa; margin-right: 1em; font-size: small;}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
/* Keep progress bar CSS for potential future use or remove if definitely not needed */
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co./spaces/reach-vb/Blazingly-fast-LoRA/resolve/main/flux_lora.png" alt="LoRA"> <a href="https://huggingface.co./docs/inference-providers/en/index">Blazingly Fast LoRA by Fal & HF</a> 🤗</h1>""",
        elem_id="title",
    )
    # --- States for parameters previously in Advanced Settings ---
    selected_index = gr.State(None)
    width = gr.State(1024) # Default width
    height = gr.State(1024) # Default height
    seed = gr.State(0) # Default seed (will be randomized by run_lora)
    # input_image = gr.State(None) # State for input image if img2img was kept

    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA/Model")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("Select a base model or add a custom one below.") # Updated initial text
            gallery = gr.Gallery(
                # Ensure items have 'image' and 'title' keys, provide fallbacks if needed
                [(item.get("image"), item.get("title", item["repo"].split('/')[-1])) for item in loras],
                label="Model Gallery", # Changed label
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Custom Model", info="Hugging Face model ID (e.g., user/model-name) or URL", placeholder="stabilityai/stable-diffusion-xl-base-1.0") # Updated label/placeholder
                gr.Markdown("[Check Hugging Face Models](https://huggingface.co./models?inference_provider=fal-ai&pipeline_tag=text-to-image&sort=trending)", elem_id="lora_list") # Updated link/text
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Clear custom model info", visible=False) # Changed button text
        with gr.Column():
            # Keep progress bar element, but it will only be shown briefly if API is slow, then hidden by run_lora return
            progress_bar = gr.Markdown(elem_id="progress", visible=False, value="Generating...")
            result = gr.Image(label="Generated Image")
            # Display the seed used for the generation
            used_seed_display = gr.Textbox(label="Seed Used", value=0, interactive=False) # Display seed used

    # --- Removed Advanced Settings Accordion ---
    # with gr.Row():
    #     with gr.Accordion("Advanced Settings", open=False):
    #         ... (Removed content) ...

    gallery.select(
        update_selection,
        inputs=[], # No direct inputs needed, uses evt
        # Update prompt placeholder, selection text, selected index state, and width/height states
        outputs=[prompt, selected_info, selected_index, width, height]
    )
    # Use submit event for Textbox to trigger add_custom_lora
    custom_lora.submit(
        add_custom_lora,
        inputs=[custom_lora],
        # Outputs: info card, remove button, gallery, selection text, selected index state, prompt placeholder
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
    )
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] # Clear textbox too
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        # Inputs now use state variables for width, height, seed
        inputs=[prompt, selected_index, seed, width, height],
        # Outputs: result image, seed state (updated with used seed), progress bar update
        outputs=[result, seed, progress_bar]
    ).then(
        # Update the displayed seed value after run_lora completes
        lambda s: gr.update(value=s),
        inputs=[seed],
        outputs=[used_seed_display]
    )


app.queue()
app.launch()