import os import random import sys from typing import Sequence, Mapping, Any, Union import torch # import spaces COMFYUI_PATH = "./ComfyUI" """ To avoid loading the models each time, we store them in a global variable. """ COMFY_MODELS = None def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: """Returns the value at the given index of a sequence or mapping. If the object is a sequence (like list or string), returns the value at the given index. If the object is a mapping (like a dictionary), returns the value at the index-th key. Some return a dictionary, in these cases, we look for the "results" key Args: obj (Union[Sequence, Mapping]): The object to retrieve the value from. index (int): The index of the value to retrieve. Returns: Any: The value at the given index. Raises: IndexError: If the index is out of bounds for the object and the object is not a mapping. """ try: return obj[index] except KeyError: return obj["result"][index] def find_path(name: str, path: str = None) -> str: """ Recursively looks at parent folders starting from the given path until it finds the given name. Returns the path as a Path object if found, or None otherwise. """ # If no path is given, use the current working directory if path is None: path = os.getcwd() # Check if the current directory contains the name if name in os.listdir(path): path_name = os.path.join(path, name) print(f"{name} found: {path_name}") return path_name # Get the parent directory parent_directory = os.path.dirname(path) # If the parent directory is the same as the current directory, we've reached the root and stop the search if parent_directory == path: return None # Recursively call the function with the parent directory return find_path(name, parent_directory) def add_comfyui_directory_to_sys_path() -> None: """ Add 'ComfyUI' to the sys.path """ sys.path.append(COMFYUI_PATH) def add_extra_model_paths() -> None: """ Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. """ try: from test import load_extra_path_config except ImportError: print( "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." ) from utils.extra_config import load_extra_path_config extra_model_paths = find_path("extra_model_paths.yaml") if extra_model_paths is not None: load_extra_path_config(extra_model_paths) else: print("Could not find the extra_model_paths config file.") add_comfyui_directory_to_sys_path() add_extra_model_paths() def import_custom_nodes() -> None: """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS This function sets up a new asyncio event loop, initializes the PromptServer, creates a PromptQueue, and initializes the custom nodes. """ import asyncio import execution from nodes import init_extra_nodes import server # Creating a new event loop and setting it as the default loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Creating an instance of PromptServer with the loop server_instance = server.PromptServer(loop) execution.PromptQueue(server_instance) # Initializing custom nodes init_extra_nodes() from nodes import ( LoadImage, SaveImage, NODE_CLASS_MAPPINGS, CLIPTextEncode, VAELoader, VAEEncode, DualCLIPLoader, VAEDecode, UNETLoader, ControlNetLoader, ControlNetApplyAdvanced, ) @torch.inference_mode() def load_models(): dualcliploader = DualCLIPLoader() dualcliploader_94 = dualcliploader.load_clip( clip_name1="t5xxl_fp16.safetensors", clip_name2="clip_l.safetensors", type="flux", device="default", ) vaeloader = VAELoader() vaeloader_95 = vaeloader.load_vae(vae_name="ae.safetensors") pulidfluxmodelloader = NODE_CLASS_MAPPINGS["PulidFluxModelLoader"]() pulidfluxmodelloader_44 = pulidfluxmodelloader.load_model( pulid_file="pulid_flux_v0.9.1.safetensors" ) pulidfluxevacliploader = NODE_CLASS_MAPPINGS["PulidFluxEvaClipLoader"]() pulidfluxevacliploader_45 = pulidfluxevacliploader.load_eva_clip() pulidfluxinsightfaceloader = NODE_CLASS_MAPPINGS["PulidFluxInsightFaceLoader"]() pulidfluxinsightfaceloader_46 = pulidfluxinsightfaceloader.load_insightface( provider="CUDA" ) controlnetloader = ControlNetLoader() controlnetloader_49 = controlnetloader.load_controlnet( control_net_name="Flux_Dev_ControlNet_Union_Pro_ShakkerLabs.safetensors" ) unetloader = UNETLoader() unetloader_93 = unetloader.load_unet( unet_name="flux1-dev.safetensors", weight_dtype="default" ) return { "dualcliploader_94": dualcliploader_94, "vaeloader_95": vaeloader_95, "pulidfluxmodelloader_44": pulidfluxmodelloader_44, "pulidfluxevacliploader_45": pulidfluxevacliploader_45, "pulidfluxinsightfaceloader_46": pulidfluxinsightfaceloader_46, "controlnetloader_49": controlnetloader_49, "unetloader_93": unetloader_93 } def initialize_models(): global COMFY_MODELS if COMFY_MODELS is None: import_custom_nodes() # Ensure NODE_CLASS_MAPPINGS is initialized COMFY_MODELS = load_models() initialize_models() def main( face_image: str, input_image: str, output_image: str, dist_image: str = None, positive_prompt: str = "", id_weight: float = 0.75, ): global COMFY_MODELS if COMFY_MODELS is None: raise ValueError("Models must be initialized before calling main(). Call initialize_models() first.") with torch.inference_mode(): dualcliploader_94 = COMFY_MODELS["dualcliploader_94"] vaeloader_95 = COMFY_MODELS["vaeloader_95"] pulidfluxmodelloader_44 = COMFY_MODELS["pulidfluxmodelloader_44"] pulidfluxevacliploader_45 = COMFY_MODELS["pulidfluxevacliploader_45"] pulidfluxinsightfaceloader_46 = COMFY_MODELS["pulidfluxinsightfaceloader_46"] controlnetloader_49 = COMFY_MODELS["controlnetloader_49"] unetloader_93 = COMFY_MODELS["unetloader_93"] cliptextencode = CLIPTextEncode() cliptextencode_23 = cliptextencode.encode( text="", clip=get_value_at_index(dualcliploader_94, 0) ) loadimage = LoadImage() loadimage_24 = loadimage.load_image(image=face_image) loadimage_40 = loadimage.load_image(image=input_image) vaeencode = VAEEncode() vaeencode_35 = vaeencode.encode( pixels=get_value_at_index(loadimage_40, 0), vae=get_value_at_index(vaeloader_95, 0), ) randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() randomnoise_39 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) cliptextencode_42 = cliptextencode.encode( text=positive_prompt, clip=get_value_at_index(dualcliploader_94, 0) ) ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() ksamplerselect_50 = ksamplerselect.get_sampler(sampler_name="euler") applypulidflux = NODE_CLASS_MAPPINGS["ApplyPulidFlux"]() setunioncontrolnettype = NODE_CLASS_MAPPINGS["SetUnionControlNetType"]() controlnetapplyadvanced = ControlNetApplyAdvanced() basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() vaedecode = VAEDecode() applypulidflux_133 = applypulidflux.apply_pulid_flux( weight=id_weight, start_at=0.10000000000000002, end_at=1, fusion="mean", fusion_weight_max=1, fusion_weight_min=0, train_step=1000, use_gray=True, model=get_value_at_index(unetloader_93, 0), pulid_flux=get_value_at_index(pulidfluxmodelloader_44, 0), eva_clip=get_value_at_index(pulidfluxevacliploader_45, 0), face_analysis=get_value_at_index(pulidfluxinsightfaceloader_46, 0), image=get_value_at_index(loadimage_24, 0), unique_id=1674270197144619516, ) setunioncontrolnettype_41 = setunioncontrolnettype.set_controlnet_type( type="tile", control_net=get_value_at_index(controlnetloader_49, 0) ) controlnetapplyadvanced_37 = controlnetapplyadvanced.apply_controlnet( strength=1, start_percent=0.1, end_percent=0.8, positive=get_value_at_index(cliptextencode_42, 0), negative=get_value_at_index(cliptextencode_23, 0), control_net=get_value_at_index(setunioncontrolnettype_41, 0), image=get_value_at_index(loadimage_40, 0), vae=get_value_at_index(vaeloader_95, 0), ) basicguider_122 = basicguider.get_guider( model=get_value_at_index(applypulidflux_133, 0), conditioning=get_value_at_index(controlnetapplyadvanced_37, 0), ) basicscheduler_131 = basicscheduler.get_sigmas( scheduler="beta", steps=28, denoise=0.75, model=get_value_at_index(applypulidflux_133, 0), ) samplercustomadvanced_1 = samplercustomadvanced.sample( noise=get_value_at_index(randomnoise_39, 0), guider=get_value_at_index(basicguider_122, 0), sampler=get_value_at_index(ksamplerselect_50, 0), sigmas=get_value_at_index(basicscheduler_131, 0), latent_image=get_value_at_index(vaeencode_35, 0), ) vaedecode_114 = vaedecode.decode( samples=get_value_at_index(samplercustomadvanced_1, 0), vae=get_value_at_index(vaeloader_95, 0), ) save_comfy_images(get_value_at_index(vaedecode_114, 0), [output_image]) def save_comfy_images(images, output_dirs): # images is a PyTorch tensor with shape [batch_size, height, width, channels] import numpy as np from PIL import Image for idx, image in enumerate(images): # Create the output directory if it doesn't exist output_dir = os.path.dirname(output_dirs[idx]) if output_dir and not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True) numpy_image = 255. * image.cpu().numpy() numpy_image = np.clip(numpy_image, 0, 255).astype(np.uint8) pil_image = Image.fromarray(numpy_image) pil_image.save(output_dirs[idx]) # @spaces.GPU def face_enhance(face_image: str, input_image: str, output_image: str, dist_image: str = None, positive_prompt: str = "", id_weight: float = 0.75): initialize_models() # Ensure models are loaded main(face_image, input_image, output_image, dist_image, positive_prompt, id_weight) if __name__ == "__main__": pass