|
import gradio as gr |
|
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
model_name = "google/vit-hybrid-base-bit-384" |
|
feature_extractor = ViTHybridImageProcessor.from_pretrained(model_name) |
|
model = ViTHybridForImageClassification.from_pretrained(model_name) |
|
|
|
|
|
def classify_image(image): |
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class_idx = logits.argmax(-1).item() |
|
return model.config.id2label[predicted_class_idx] |
|
|
|
|
|
iface = gr.Interface( |
|
fn=classify_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs="text", |
|
title="ViT-Hybrid Image Classifier", |
|
description="Upload an image to classify it using the ViT-Hybrid model.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|