|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from torch import Tensor, nn |
|
import torch |
|
from einops import rearrange, repeat |
|
from torch import Tensor |
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
try: |
|
from flash_attn import ( |
|
flash_attn_varlen_func |
|
) |
|
FLASHATTN_IS_AVAILABLE = True |
|
except ImportError: |
|
FLASHATTN_IS_AVAILABLE = False |
|
flash_attn_varlen_func = None |
|
|
|
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask: Tensor | None = None, backend = 'pytorch') -> Tensor: |
|
q, k = apply_rope(q, k, pe) |
|
if backend == 'pytorch': |
|
if mask is not None and mask.dtype == torch.bool: |
|
mask = torch.zeros_like(mask).to(q).masked_fill_(mask.logical_not(), -1e20) |
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask) |
|
|
|
x = rearrange(x, "B H L D -> B L (H D)") |
|
elif backend == 'flash_attn': |
|
|
|
|
|
|
|
b, h, lq, d = q.shape |
|
_, _, lk, _ = k.shape |
|
q = rearrange(q, "B H L D -> B L H D") |
|
k = rearrange(k, "B H S D -> B S H D") |
|
v = rearrange(v, "B H S D -> B S H D") |
|
if mask is None: |
|
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(q.device, non_blocking=True) |
|
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(k.device, non_blocking=True) |
|
else: |
|
q_lens = torch.sum(mask[:, 0, :, 0], dim=1).int() |
|
k_lens = torch.sum(mask[:, 0, 0, :], dim=1).int() |
|
q = torch.cat([q_v[:q_l] for q_v, q_l in zip(q, q_lens)]) |
|
k = torch.cat([k_v[:k_l] for k_v, k_l in zip(k, k_lens)]) |
|
v = torch.cat([v_v[:v_l] for v_v, v_l in zip(v, k_lens)]) |
|
cu_seqlens_q = torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32) |
|
cu_seqlens_k = torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32) |
|
max_seqlen_q = q_lens.max() |
|
max_seqlen_k = k_lens.max() |
|
|
|
x = flash_attn_varlen_func( |
|
q, |
|
k, |
|
v, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_k=max_seqlen_k |
|
) |
|
x_list = [x[cu_seqlens_q[i]:cu_seqlens_q[i+1]] for i in range(b)] |
|
x = pad_sequence(tuple(x_list), batch_first=True) |
|
x = rearrange(x, "B L H D -> B L (H D)") |
|
else: |
|
raise NotImplementedError |
|
return x |
|
|
|
|
|
def rope(pos: Tensor, dim: int, theta: int) -> Tensor: |
|
assert dim % 2 == 0 |
|
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim |
|
omega = 1.0 / (theta**scale) |
|
out = torch.einsum("...n,d->...nd", pos, omega) |
|
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) |
|
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) |
|
return out.float() |
|
|
|
|
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: |
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) |
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) |
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] |
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] |
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) |
|
|
|
class EmbedND(nn.Module): |
|
def __init__(self, dim: int, theta: int, axes_dim: list[int]): |
|
super().__init__() |
|
self.dim = dim |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
|
|
def forward(self, ids: Tensor) -> Tensor: |
|
n_axes = ids.shape[-1] |
|
emb = torch.cat( |
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], |
|
dim=-3, |
|
) |
|
|
|
return emb.unsqueeze(1) |
|
|
|
|
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
t = time_factor * t |
|
half = dim // 2 |
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( |
|
t.device |
|
) |
|
|
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
if torch.is_floating_point(t): |
|
embedding = embedding.to(t) |
|
return embedding |
|
|
|
|
|
class MLPEmbedder(nn.Module): |
|
def __init__(self, in_dim: int, hidden_dim: int): |
|
super().__init__() |
|
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) |
|
self.silu = nn.SiLU() |
|
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.out_layer(self.silu(self.in_layer(x))) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.scale = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x: Tensor): |
|
x_dtype = x.dtype |
|
x = x.float() |
|
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) |
|
return (x * rrms).to(dtype=x_dtype) * self.scale |
|
|
|
|
|
class QKNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.query_norm = RMSNorm(dim) |
|
self.key_norm = RMSNorm(dim) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: |
|
q = self.query_norm(q) |
|
k = self.key_norm(k) |
|
return q.to(v), k.to(v) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.norm = QKNorm(head_dim) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward(self, x: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor: |
|
qkv = self.qkv(x) |
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k = self.norm(q, k, v) |
|
x = attention(q, k, v, pe=pe, mask=mask) |
|
x = self.proj(x) |
|
return x |
|
|
|
class CrossAttention(nn.Module): |
|
def __init__(self, dim: int, context_dim: int, num_heads: int = 8, qkv_bias: bool = False): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.kv = nn.Linear(dim, context_dim * 2, bias=qkv_bias) |
|
self.norm = QKNorm(head_dim) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward(self, x: Tensor, context: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor: |
|
qkv = self.qkv(x) |
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k = self.norm(q, k, v) |
|
x = attention(q, k, v, pe=pe, mask=mask) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
@dataclass |
|
class ModulationOut: |
|
shift: Tensor |
|
scale: Tensor |
|
gate: Tensor |
|
|
|
|
|
class Modulation(nn.Module): |
|
def __init__(self, dim: int, double: bool): |
|
super().__init__() |
|
self.is_double = double |
|
self.multiplier = 6 if double else 3 |
|
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) |
|
|
|
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: |
|
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) |
|
|
|
return ( |
|
ModulationOut(*out[:3]), |
|
ModulationOut(*out[3:]) if self.is_double else None, |
|
) |
|
|
|
|
|
class DoubleStreamBlock(nn.Module): |
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, backend = 'pytorch'): |
|
super().__init__() |
|
|
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.img_mod = Modulation(hidden_size, double=True) |
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
self.backend = backend |
|
|
|
self.txt_mod = Modulation(hidden_size, double=True) |
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
|
|
|
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None, txt_length = None): |
|
img_mod1, img_mod2 = self.img_mod(vec) |
|
txt_mod1, txt_mod2 = self.txt_mod(vec) |
|
|
|
txt, img = x[:, :txt_length], x[:, txt_length:] |
|
|
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift |
|
img_qkv = self.img_attn.qkv(img_modulated) |
|
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) |
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift |
|
txt_qkv = self.txt_attn.qkv(txt_modulated) |
|
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) |
|
|
|
|
|
q = torch.cat((txt_q, img_q), dim=2) |
|
k = torch.cat((txt_k, img_k), dim=2) |
|
v = torch.cat((txt_v, img_v), dim=2) |
|
if mask is not None: |
|
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads) |
|
attn = attention(q, k, v, pe=pe, mask = mask, backend = self.backend) |
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] |
|
|
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn) |
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) |
|
|
|
|
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) |
|
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) |
|
x = torch.cat((txt, img), 1) |
|
return x |
|
|
|
|
|
class SingleStreamBlock(nn.Module): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qk_scale: float | None = None, |
|
backend='pytorch' |
|
): |
|
super().__init__() |
|
self.hidden_dim = hidden_size |
|
self.num_heads = num_heads |
|
head_dim = hidden_size // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) |
|
|
|
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) |
|
|
|
self.norm = QKNorm(head_dim) |
|
|
|
self.hidden_size = hidden_size |
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.mlp_act = nn.GELU(approximate="tanh") |
|
self.modulation = Modulation(hidden_size, double=False) |
|
self.backend = backend |
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None) -> Tensor: |
|
mod, _ = self.modulation(vec) |
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift |
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) |
|
|
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k = self.norm(q, k, v) |
|
if mask is not None: |
|
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads) |
|
|
|
attn = attention(q, k, v, pe=pe, mask = mask, backend=self.backend) |
|
|
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) |
|
return x + mod.gate * output |
|
|
|
|
|
class DoubleStreamBlockC(DoubleStreamBlock): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, |
|
qkv_bias: bool = False, backend='pytorch', |
|
abondon_cond = False): |
|
super().__init__(hidden_size, num_heads, mlp_ratio, |
|
qkv_bias, backend) |
|
self.abondon_cond = abondon_cond |
|
|
|
def forward(self, x: Tensor, vec: Tensor, |
|
pe: Tensor, mask: Tensor = None, |
|
txt_length=None, |
|
uncondi_length=None, |
|
uncondi_pe = None, |
|
mask_uncond = None): |
|
|
|
if self.abondon_cond: |
|
x = [ix[:u_l, :] for ix, u_l in zip(x, uncondi_length)] |
|
x = pad_sequence(x, batch_first=True) |
|
if not x.shape[1] == pe.shape[2]: |
|
pe = uncondi_pe |
|
mask = mask_uncond |
|
|
|
x = super().forward(x, vec, pe, mask, txt_length) |
|
return x |
|
|
|
class SingleStreamBlockC(SingleStreamBlock): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__(self, hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qk_scale: float | None = None, |
|
backend='pytorch', |
|
abondon_cond = False): |
|
super().__init__(hidden_size, num_heads, mlp_ratio, |
|
qk_scale, backend) |
|
self.abondon_cond = abondon_cond |
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None, |
|
uncondi_length = None, uncondi_pe = None, mask_uncond = None) -> Tensor: |
|
if self.abondon_cond: |
|
x = [ix[:u_l, :] for ix, u_l in zip(x, uncondi_length)] |
|
x = pad_sequence(x, batch_first=True) |
|
if not x.shape[1] == pe.shape[2]: |
|
pe = uncondi_pe |
|
mask = mask_uncond |
|
|
|
x = super().forward(x, vec, pe, mask) |
|
return x |
|
|
|
|
|
class DoubleStreamBlockD(DoubleStreamBlock): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, |
|
qkv_bias: bool = False, backend='pytorch'): |
|
super().__init__(hidden_size, num_heads, mlp_ratio, |
|
qkv_bias, backend) |
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.edit_mod = Modulation(hidden_size, double=True) |
|
self.edit_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.edit_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.edit_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.edit_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
def forward(self, x: Tensor, vec: Tensor, |
|
pe: Tensor, mask: Tensor = None, |
|
txt_length=None, |
|
edit_length=None): |
|
if edit_length is not None: |
|
txt, edit, img = x[:, :txt_length], x[:, txt_length:txt_length + edit_length], x[:, txt_length + edit_length:] |
|
else: |
|
txt, img = x[:, :txt_length], x[:, txt_length:] |
|
img_mod1, img_mod2 = self.img_mod(vec) |
|
txt_mod1, txt_mod2 = self.txt_mod(vec) |
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift |
|
img_qkv = self.img_attn.qkv(img_modulated) |
|
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) |
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift |
|
txt_qkv = self.txt_attn.qkv(txt_modulated) |
|
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) |
|
|
|
if edit_length is not None: |
|
edit_mod1, edit_mod2 = self.edit_mod(vec) |
|
|
|
edit_modulated = self.edit_norm1(edit) |
|
edit_modulated = (1 + edit_mod1.scale) * edit_modulated + edit_mod1.shift |
|
edit_qkv = self.edit_attn.qkv(edit_modulated) |
|
edit_q, edit_k, edit_v = rearrange(edit_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
edit_q, edit_k = self.edit_attn.norm(edit_q, edit_k, edit_v) |
|
else: |
|
edit_q, edit_k, edit_v = None, None, None |
|
|
|
|
|
|
|
q = torch.cat((txt_q,) + ((edit_q,) if edit_q is not None else ()) + (img_q,), dim=2) |
|
k = torch.cat((txt_k,) + ((edit_k,) if edit_k is not None else ()) + (img_k,), dim=2) |
|
v = torch.cat((txt_v,) + ((edit_v,) if edit_v is not None else ()) + (img_v,), dim=2) |
|
if mask is not None: |
|
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads) |
|
attn = attention(q, k, v, pe=pe, mask=mask, backend=self.backend) |
|
if edit_length is not None: |
|
txt_attn, edit_attn, img_attn = attn[:, : txt_length], attn[:, txt_length:txt_length + edit_length ], attn[:, txt_length + edit_length:] |
|
else: |
|
txt_attn, img_attn = attn[:, : txt_length], attn[:, txt_length:] |
|
|
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn) |
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) |
|
|
|
|
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) |
|
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) |
|
|
|
|
|
if edit_length is not None: |
|
edit = edit + edit_mod1.gate * self.edit_attn.proj(edit_attn) |
|
edit = edit + edit_mod2.gate * self.edit_mlp((1 + edit_mod2.scale) * self.edit_norm2(edit) + edit_mod2.shift) |
|
x = torch.cat((txt, edit, img), 1) |
|
else: |
|
x = torch.cat((txt, img), 1) |
|
return x |
|
|
|
|
|
class LastLayer(nn.Module): |
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) |
|
|
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor: |
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) |
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
if __name__ == '__main__': |
|
pe = EmbedND(dim=64, theta=10000, axes_dim=[16, 56, 56]) |
|
|
|
ix_id = torch.zeros(64 // 2, 64 // 2, 3) |
|
ix_id[..., 1] = ix_id[..., 1] + torch.arange(64 // 2)[:, None] |
|
ix_id[..., 2] = ix_id[..., 2] + torch.arange(64 // 2)[None, :] |
|
ix_id = rearrange(ix_id, "h w c -> 1 (h w) c") |
|
pos = torch.cat([ix_id, ix_id], dim = 1) |
|
a = pe(pos) |
|
|
|
b = torch.cat([pe(ix_id), pe(ix_id)], dim = 2) |
|
|
|
print(a - b) |