File size: 13,188 Bytes
64cc34d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import torch
from diffusers.pipelines import FluxPipeline
from typing import List, Union, Optional, Dict, Any, Callable
from .transformer import tranformer_forward
from .condition import Condition
from .conceptrol import Conceptrol

from diffusers.pipelines.flux.pipeline_flux import (
    FluxPipelineOutput,
    calculate_shift,
    retrieve_timesteps,
    np,
)

denoising_images = []


def prepare_params(
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = 512,
    width: Optional[int] = 512,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    max_sequence_length: int = 512,
    **kwargs: dict,
):
    return (
        prompt,
        prompt_2,
        height,
        width,
        num_inference_steps,
        timesteps,
        guidance_scale,
        num_images_per_prompt,
        generator,
        latents,
        prompt_embeds,
        pooled_prompt_embeds,
        output_type,
        return_dict,
        joint_attention_kwargs,
        callback_on_step_end,
        callback_on_step_end_tensor_inputs,
        max_sequence_length,
    )


def seed_everything(seed: int = 42):
    torch.backends.cudnn.deterministic = True
    torch.manual_seed(seed)
    np.random.seed(seed)


def set_scale(pipe, condition_scale):
    for name, module in pipe.transformer.named_modules():
        if not name.endswith(".attn"):
            continue
        module.c_factor = torch.ones(1, 1) * condition_scale


class FluxConceptrolPipeline(FluxPipeline):

    def find_subsequence(self, text, sub):
        sub_len = len(sub)
        for i in range(len(text) - sub_len + 1):
            if text[i : i + sub_len] == sub:
                return i, i + sub_len  # Return start and end indices
        return None

    def locate_subject(self, prompt, subject, max_length=512):
        text_inputs = self.tokenizer_2.tokenize(
            prompt,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        subject_inputs = self.tokenizer_2.tokenize(
            subject,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        print(f"Locate {subject}", self.find_subsequence(text_inputs, subject_inputs))
        return self.find_subsequence(text_inputs, subject_inputs)

        text_input_ids = text_inputs
        return (
            text_input_ids.index(subject_inputs[0]),
            text_input_ids.index(subject_inputs[-1]) + 1,
        )

    def load_conceptrol(self, conceptrol):
        self.conceptrol = conceptrol

    @torch.no_grad()
    def __call__(
        self,
        image=None,
        model_config: Optional[Dict[str, Any]] = {},
        condition_scale: float = 1.0,
        subject: Optional[str] = None,
        control_guidance_start: float = 0.0,
        control_guidance_end: float = 1.0,
        conceptrol: Conceptrol = None,
        seed: int = 42,
        **params: dict,
    ):
        seed_everything(seed)

        if conceptrol is None:
            if not hasattr(self, "conceptrol"):
                raise ValueError("Default conceptrol not loaded. Please call load_conceptrol() first.")
            conceptrol = self.conceptrol

        conditions = [Condition("subject", image.convert("RGB").resize((512, 512)))]
        if condition_scale != 1:
            for name, module in self.transformer.named_modules():
                if not name.endswith(".attn"):
                    continue
                module.c_factor = torch.ones(1, 1) * condition_scale

        (
            prompt,
            prompt_2,
            height,
            width,
            num_inference_steps,
            timesteps,
            guidance_scale,
            num_images_per_prompt,
            generator,
            latents,
            prompt_embeds,
            pooled_prompt_embeds,
            output_type,
            return_dict,
            joint_attention_kwargs,
            callback_on_step_end,
            callback_on_step_end_tensor_inputs,
            max_sequence_length,
        ) = prepare_params(**params)

        if subject is not None:
            textual_concept_idx = self.locate_subject(params["prompt"], subject)
        else:
            raise ValueError("Subject has to be provided")

        if textual_concept_idx is None:
            raise ValueError("Textual concept idx has to be provided")

        conceptrol.register(textual_concept_idx)

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None)
            if self.joint_attention_kwargs is not None
            else None
        )
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 4.1. Prepare conditions
        condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3))
        use_condition = conditions is not None or []
        if use_condition:
            assert len(conditions) <= 1, "Only one condition is supported for now."
            self.set_adapters(conditions[0].condition_type)
            for condition in conditions:
                tokens, ids, type_id = condition.encode(self)
                condition_latents.append(tokens)  # [batch_size, token_n, token_dim]
                condition_ids.append(ids)  # [token_n, id_dim(3)]
                condition_type_ids.append(type_id)  # [token_n, 1]
            condition_latents = torch.cat(condition_latents, dim=1)
            condition_ids = torch.cat(condition_ids, dim=0)
            if condition.condition_type == "subject":
                condition_ids[:, 2] += width // 16
            condition_type_ids = torch.cat(condition_type_ids, dim=0)

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )
        self._num_timesteps = len(timesteps)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if (i / len(timesteps) < control_guidance_start) or (
                    (i + 1) / len(timesteps) > control_guidance_end
                ):
                    set_scale(self, 0.5)  # Warmup required for the first few steps
                else:
                    set_scale(self, condition_scale)
                if self.interrupt:
                    continue

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latents.shape[0]).to(latents.dtype)

                # handle guidance
                if self.transformer.config.guidance_embeds:
                    guidance = torch.tensor([guidance_scale], device=device)
                    guidance = guidance.expand(latents.shape[0])
                else:
                    guidance = None
                noise_pred = tranformer_forward(
                    self.transformer,
                    model_config=model_config,
                    conceptrol=conceptrol,
                    # Inputs of the condition (new feature)
                    condition_latents=condition_latents if use_condition else None,
                    condition_ids=condition_ids if use_condition else None,
                    condition_type_ids=condition_type_ids if use_condition else None,
                    # Inputs to the original transformer
                    hidden_states=latents,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(
                    noise_pred, t, latents, return_dict=False
                )[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(
                        self, latents, callback_kwargs
                    )

                    global denoising_images
                    denoising_images.append(callback_outputs)

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(
                latents, height, width, self.vae_scale_factor
            )
            latents = (
                latents / self.vae.config.scaling_factor
            ) + self.vae.config.shift_factor
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if condition_scale != 1:
            for name, module in self.transformer.named_modules():
                if not name.endswith(".attn"):
                    continue
                del module.c_factor

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)