Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
from datasets import load_dataset | |
def download_default_datasets_to_local_folder() -> None: | |
""" | |
Downloads the default datasets to a local folder. | |
The temporary folder is given by the ENV var H2O_LLM_STUDIO_DEMO_DATASETS. | |
If the ENV var is not set, this function will raise an error. | |
The datasets are transformed to parquet format and saved in the folder. | |
""" | |
path = os.environ.get("H2O_LLM_STUDIO_DEMO_DATASETS") | |
if path is None: | |
raise ValueError("H2O_LLM_STUDIO_DEMO_DATASETS is not set.") | |
if not os.path.exists(path): | |
os.makedirs(path, exist_ok=True) | |
# Prepare Causal Language Modeling Dataset | |
ds = load_dataset("OpenAssistant/oasst2") | |
train = ds["train"].to_pandas() | |
val = ds["validation"].to_pandas() | |
df = pd.concat([train, val], axis=0).reset_index(drop=True) | |
df.to_parquet(os.path.join(path, "causal_language_modeling.pq"), index=False) | |
# Prepare DPO Modeling Dataset | |
df = load_dataset("Intel/orca_dpo_pairs")["train"].to_pandas() | |
df.to_parquet(os.path.join(path, "dpo_modeling.pq"), index=False) | |
# Prepare Classification Modeling Dataset | |
df = load_dataset("stanfordnlp/imdb")["train"].to_pandas() | |
df.to_parquet(os.path.join(path, "classification_modeling.pq"), index=False) | |
# Prepare Regression Modeling Dataset | |
df = load_dataset("nvidia/HelpSteer2")["train"].to_pandas() | |
df.to_parquet(os.path.join(path, "regression_modeling.pq"), index=False) | |
if __name__ == "__main__": | |
download_default_datasets_to_local_folder() | |