File size: 6,518 Bytes
5caedb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
from dataclasses import dataclass, field
from typing import Any, Dict, List, Tuple

import llm_studio.src.datasets.text_causal_regression_ds
import llm_studio.src.plots.text_causal_classification_modeling_plots
from llm_studio.app_utils.config import default_cfg
from llm_studio.python_configs.base import DefaultConfig, DefaultConfigProblemBase
from llm_studio.python_configs.text_causal_classification_modeling_config import (
    ConfigNLPCausalClassificationAugmentation as ConfigNLPCausalRegressionAugmentation,
)
from llm_studio.python_configs.text_causal_classification_modeling_config import (
    ConfigNLPCausalClassificationDataset,
)
from llm_studio.python_configs.text_causal_classification_modeling_config import (
    ConfigNLPCausalClassificationLogging as ConfigNLPCausalRegressionLogging,
)
from llm_studio.python_configs.text_causal_classification_modeling_config import (
    ConfigNLPCausalClassificationTokenizer as ConfigNLPCausalRegressionTokenizer,
)
from llm_studio.python_configs.text_causal_classification_modeling_config import (
    ConfigNLPCausalClassificationTraining,
)
from llm_studio.python_configs.text_causal_language_modeling_config import (
    ConfigNLPCausalLMArchitecture,
    ConfigNLPCausalLMEnvironment,
)
from llm_studio.src import possible_values
from llm_studio.src.losses import text_causal_regression_modeling_losses
from llm_studio.src.metrics import text_causal_regression_modeling_metrics
from llm_studio.src.models import text_causal_regression_modeling_model
from llm_studio.src.utils.modeling_utils import generate_experiment_name


@dataclass
class ConfigNLPCausalRegressionDataset(ConfigNLPCausalClassificationDataset):
    dataset_class: Any = llm_studio.src.datasets.text_causal_regression_ds.CustomDataset
    num_classes: int = 1

    def __post_init__(self):
        self.prompt_column = (
            tuple(
                self.prompt_column,
            )
            if isinstance(self.prompt_column, str)
            else tuple(self.prompt_column)
        )
        super().__post_init__()

        self._visibility["num_classes"] = -1


@dataclass
class ConfigNLPCausalRegressionTraining(ConfigNLPCausalClassificationTraining):
    loss_class: Any = text_causal_regression_modeling_losses.Losses
    loss_function: str = "MSELoss"

    learning_rate: float = 0.0001
    differential_learning_rate_layers: Tuple[str, ...] = ("regression_head",)
    differential_learning_rate: float = 0.00001

    def __post_init__(self):
        super().__post_init__()
        self._possible_values["loss_function"] = self.loss_class.names()

        self._possible_values["differential_learning_rate_layers"] = (
            possible_values.String(
                values=("backbone", "embed", "regression_head"),
                allow_custom=False,
                placeholder="Select optional layers...",
            )
        )


@dataclass
class ConfigNLPCausalRegressionArchitecture(ConfigNLPCausalLMArchitecture):
    model_class: Any = text_causal_regression_modeling_model.Model

    def __post_init__(self):
        super().__post_init__()


@dataclass
class ConfigNLPCausalRegressionPrediction(DefaultConfig):
    metric_class: Any = text_causal_regression_modeling_metrics.Metrics
    metric: str = "MSE"
    batch_size_inference: int = 0

    def __post_init__(self):
        super().__post_init__()

        self._possible_values["metric"] = self.metric_class.names()
        self._possible_values["batch_size_inference"] = (0, 512, 1)

        self._visibility["metric_class"] = -1


@dataclass
class ConfigNLPCausalRegressionEnvironment(ConfigNLPCausalLMEnvironment):
    _model_card_template: str = "text_causal_regression_model_card_template.md"
    _summary_card_template: str = (
        "text_causal_regression_experiment_summary_card_template.md"
    )

    def __post_init__(self):
        super().__post_init__()


@dataclass
class ConfigProblemBase(DefaultConfigProblemBase):
    output_directory: str = f"output/{os.path.basename(__file__).split('.')[0]}"
    experiment_name: str = field(default_factory=generate_experiment_name)
    llm_backbone: str = (
        "h2oai/h2o-danube3-500m-chat"
        if "h2oai/h2o-danube3-500m-chat" in default_cfg.default_causal_language_models
        else default_cfg.default_causal_language_models[0]
    )

    dataset: ConfigNLPCausalRegressionDataset = field(
        default_factory=ConfigNLPCausalRegressionDataset
    )
    tokenizer: ConfigNLPCausalRegressionTokenizer = field(
        default_factory=ConfigNLPCausalRegressionTokenizer
    )
    architecture: ConfigNLPCausalRegressionArchitecture = field(
        default_factory=ConfigNLPCausalRegressionArchitecture
    )
    training: ConfigNLPCausalRegressionTraining = field(
        default_factory=ConfigNLPCausalRegressionTraining
    )
    augmentation: ConfigNLPCausalRegressionAugmentation = field(
        default_factory=ConfigNLPCausalRegressionAugmentation
    )
    prediction: ConfigNLPCausalRegressionPrediction = field(
        default_factory=ConfigNLPCausalRegressionPrediction
    )
    environment: ConfigNLPCausalRegressionEnvironment = field(
        default_factory=ConfigNLPCausalRegressionEnvironment
    )
    logging: ConfigNLPCausalRegressionLogging = field(
        default_factory=ConfigNLPCausalRegressionLogging
    )

    def __post_init__(self):
        super().__post_init__()

        self._visibility["output_directory"] = -1

        self._possible_values["llm_backbone"] = possible_values.String(
            values=default_cfg.default_causal_language_models,
            allow_custom=True,
        )

    def check(self) -> Dict[str, List]:
        errors: Dict[str, List] = {"title": [], "message": [], "type": []}

        if isinstance(self.dataset.answer_column, str):
            errors["title"].append("Invalid answer_column type")
            errors["message"].append(
                "Providing the answer_column as a string is deprecated. "
                "Please provide the answer_column as a list."
            )
            errors["type"].append("deprecated")
            self.dataset.answer_column = [self.dataset.answer_column]

        if self.dataset.parent_id_column not in ["None", None]:
            errors["title"] += ["Parent ID column is not supported for regression"]
            errors["message"] += [
                "Parent ID column is not supported for regression datasets."
            ]
            errors["type"].append("error")

        return errors