File size: 25,554 Bytes
5caedb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import logging
import multiprocessing
import os
from dataclasses import dataclass, field
from typing import Any, Dict, List, Tuple

import torch

import llm_studio.src.datasets.text_causal_language_modeling_ds
from llm_studio.app_utils.config import default_cfg
from llm_studio.python_configs.base import DefaultConfig, DefaultConfigProblemBase
from llm_studio.src import possible_values
from llm_studio.src.augmentations.nlp_aug import BaseNLPAug
from llm_studio.src.loggers import ExternalLoggers
from llm_studio.src.losses import text_causal_language_modeling_losses
from llm_studio.src.metrics import text_causal_language_modeling_metrics
from llm_studio.src.models import text_causal_language_modeling_model
from llm_studio.src.nesting import Dependency
from llm_studio.src.optimizers import Optimizers
from llm_studio.src.plots import text_causal_language_modeling_plots
from llm_studio.src.schedulers import Schedulers
from llm_studio.src.utils.data_utils import sanity_check
from llm_studio.src.utils.modeling_utils import generate_experiment_name

logger = logging.getLogger(__name__)


@dataclass
class ConfigNLPCausalLMDataset(DefaultConfig):
    dataset_class: Any = (
        llm_studio.src.datasets.text_causal_language_modeling_ds.CustomDataset
    )

    personalize: bool = False
    chatbot_name: str = "h2oGPT"
    chatbot_author: str = "H2O.ai"

    train_dataframe: str = "/path/to/train.csv"
    validation_strategy: str = "automatic"
    validation_dataframe: str = ""
    validation_size: float = 0.01

    data_sample: float = 1.0
    data_sample_choice: Tuple[str, ...] = ("Train", "Validation")

    system_column: str = "system"
    prompt_column: Tuple[str, ...] = ("instruction", "input")
    prompt_column_separator: str = "\\n\\n"
    answer_column: str = "output"
    parent_id_column: str = "parent_id"
    id_column: str = "id"

    text_system_start: str = "<|system|>"
    text_prompt_start: str = "<|prompt|>"
    text_answer_separator: str = "<|answer|>"

    add_eos_token_to_system: bool = True
    add_eos_token_to_prompt: bool = True
    add_eos_token_to_answer: bool = True
    limit_chained_samples: bool = False
    mask_prompt_labels: bool = True
    only_last_answer: bool = False

    _allowed_file_extensions: Tuple[str, ...] = ("csv", "pq", "parquet")

    def __post_init__(self):
        self.prompt_column = (
            tuple(
                self.prompt_column,
            )
            if isinstance(self.prompt_column, str)
            else tuple(self.prompt_column)
        )
        super().__post_init__()

        self._possible_values["train_dataframe"] = possible_values.Files(
            prefer_with=lambda path: "train" in path
        )
        self._possible_values["validation_strategy"] = possible_values.String(
            values=(
                ("custom", "Custom holdout validation"),
                ("automatic", "Automatic holdout validation"),
            ),
            allow_custom=False,
        )
        self._possible_values["validation_dataframe"] = possible_values.Files(
            add_none=True, prefer_with=lambda path: "val" in path
        )
        self._possible_values["validation_size"] = (0.01, 0.95, 0.01)
        self._possible_values["data_sample"] = (0.01, 1, 0.01)
        self._possible_values["data_sample_choice"] = ["Train", "Validation"]
        self._possible_values["system_column"] = possible_values.Columns(
            prefer_with=lambda column: column in ("system",), add_none=True
        )
        self._possible_values["prompt_column"] = possible_values.Columns(
            prefer_with=lambda column: column
            in ("instruction", "prompt", "question", "input", "user")
        )
        self._possible_values["answer_column"] = possible_values.Columns(
            prefer_with=lambda column: column
            in ("answer", "output", "response", "assistant", "chosen")
        )
        self._possible_values["parent_id_column"] = possible_values.Columns(
            prefer_with=lambda column: column in ("parent", "parent_id"), add_none=True
        )

        self._possible_values["id_column"] = possible_values.Columns(
            prefer_with=lambda column: column in ("id", "ID", "index"), add_none=True
        )

        self._nesting.add(
            ["chatbot_name", "chatbot_author"],
            [Dependency(key="personalize", value=True, is_set=True)],
        )

        self._nesting.add(
            ["validation_dataframe"],
            [Dependency(key="validation_strategy", value="custom", is_set=True)],
        )

        self._nesting.add(
            ["validation_size"],
            [Dependency(key="validation_strategy", value="automatic", is_set=True)],
        )

        self._nesting.add(
            ["data_sample_choice"],
            [Dependency(key="data_sample", value=1, is_set=False)],
        )

        self._nesting.add(
            ["limit_chained_samples"],
            [Dependency(key="parent_id_column", value="None", is_set=False)],
        )

        self._nesting.add(
            ["id_column"],
            [Dependency(key="parent_id_column", value="None", is_set=False)],
        )

        self._nesting.add(
            ["text_system_start", "add_eos_token_to_system"],
            [Dependency(key="system_column", value="None", is_set=False)],
        )

        self._nesting.add(
            ["only_last_answer"],
            [
                Dependency(key="parent_id_column", value="None", is_set=False),
                Dependency(key="mask_prompt_labels", value=True, is_set=True),
            ],
        )

        self._visibility["dataset_class"] = -1


@dataclass
class ConfigNLPCausalLMTraining(DefaultConfig):
    loss_class: Any = text_causal_language_modeling_losses.Losses
    loss_function: str = "TokenAveragedCrossEntropy"
    optimizer: str = "AdamW"

    learning_rate: float = 0.0001
    differential_learning_rate_layers: Tuple[str, ...] = ()
    differential_learning_rate: float = 0.00001
    freeze_layers: Tuple[str, ...] = ()

    attention_implementation: str = "auto"
    batch_size: int = 2
    drop_last_batch: bool = True
    epochs: int = 1
    schedule: str = "Cosine"
    min_learning_rate_ratio: float = 0.0
    warmup_epochs: float = 0.0

    weight_decay: float = 0.0
    gradient_clip: float = 0.0
    grad_accumulation: int = 1

    lora: bool = True
    use_dora: bool = False
    lora_r: int = 4
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    use_rslora: bool = False
    lora_target_modules: str = ""
    lora_unfreeze_layers: Tuple[str, ...] = ()

    save_checkpoint: str = "last"
    evaluation_epochs: float = 1.0
    evaluate_before_training: bool = False
    train_validation_data: bool = False

    def __post_init__(self):
        super().__post_init__()
        self._possible_values["loss_function"] = self.loss_class.names()
        self._possible_values["optimizer"] = Optimizers.names()

        self._possible_values["learning_rate"] = possible_values.Number(
            step=1e-9, min=1e-9
        )
        self._possible_values["differential_learning_rate_layers"] = (
            possible_values.String(
                values=("backbone", "embed", "head"),
                allow_custom=True,
                placeholder="Select optional layers...",
            )
        )
        self._possible_values["differential_learning_rate"] = self._possible_values[
            "learning_rate"
        ]
        self._possible_values["freeze_layers"] = possible_values.String(
            values=("embed", "layer", "head"),
            allow_custom=True,
            placeholder="Select optional layers to freeze...",
        )
        self._possible_values["attention_implementation"] = possible_values.String(
            values=(
                ("auto", "Auto"),
                ("eager", "Eager"),
                ("flash_attention_2", "Flash Attention 2"),
                ("sdpa", "SDPA"),
            ),
            allow_custom=False,
        )

        self._possible_values["batch_size"] = (1, 256, 1)
        self._possible_values["epochs"] = (0, 10, 1)
        self._possible_values["schedule"] = Schedulers.names()
        self._possible_values["min_learning_rate_ratio"] = (0.0, 0.1, 0.0001)
        self._possible_values["warmup_epochs"] = (0.0, 5.0, 0.05)

        self._possible_values["weight_decay"] = possible_values.Number(step=1e-5, min=0)
        self._possible_values["gradient_clip"] = (0.0, 10.0, 0.1)
        self._possible_values["grad_accumulation"] = (1, 8, 1)

        self._possible_values["lora_r"] = (1, 256, 1)
        self._possible_values["lora_alpha"] = (1, 256, 1)
        self._possible_values["lora_dropout"] = (0.0, 0.5, 0.01)
        self._possible_values["lora_unfreeze_layers"] = possible_values.String(
            values=("embed", "head"),
            allow_custom=True,
            placeholder="Select optional layers to unfreeze...",
        )

        self._possible_values["save_checkpoint"] = possible_values.String(
            values=(
                ("last", "Last"),
                ("best", "Best"),
                ("each_evaluation_epoch", "Each evaluation epoch"),
                ("disable", "Disable"),
            ),
            allow_custom=False,
        )

        self._possible_values["evaluation_epochs"] = (0.01, 1, 0.01)

        self._grid_search_values["loss_function"] = self._possible_values[
            "loss_function"
        ]
        self._grid_search_values["learning_rate"] = (
            0.000001,
            0.000005,
            0.00001,
            0.00005,
            0.0001,
            0.0003,
            0.0005,
        )
        self._grid_search_values["differential_learning_rate"] = (
            0.000001,
            0.000005,
            0.00001,
            0.00005,
            0.0001,
            0.0003,
            0.0005,
        )
        self._grid_search_values["weight_decay"] = (0.0, 0.01, 0.1, 0.2)
        self._grid_search_values["warmup_epochs"] = (0.0, 0.25)
        self._grid_search_values["gradient_clip"] = (0.0, 0.5, 1, 2, 4, 8)
        self._grid_search_values["grad_accumulation"] = (1, 2, 4, 8, 16, 32)
        self._grid_search_values["batch_size"] = (1, 2, 4, 8, 16, 32, 64)
        self._grid_search_values["epochs"] = (1, 2, 4)
        self._grid_search_values["lora_r"] = (2, 4, 8, 16, 32, 64, 128)
        self._grid_search_values["lora_alpha"] = (4, 8, 16, 32, 64, 128, 256)

        self._grid_search_iscustom["loss_function"] = False
        self._grid_search_iscustom["learning_rate"] = True
        self._grid_search_iscustom["differential_learning_rate"] = True
        self._grid_search_iscustom["weight_decay"] = True
        self._grid_search_iscustom["warmup_epochs"] = True
        self._grid_search_iscustom["gradient_clip"] = True
        self._grid_search_iscustom["grad_accumulation"] = True

        self._visibility["loss_class"] = -1
        self._visibility["drop_last_batch"] = -1
        self._visibility["differential_learning_rate_layers"] = 1
        self._visibility["differential_learning_rate"] = 1

        self._nesting.add(
            ["differential_learning_rate"],
            [
                Dependency(
                    key="differential_learning_rate_layers", value=None, is_set=False
                )
            ],
        )
        self._nesting.add(
            ["freeze_layers"],
            [Dependency(key="lora", value=False, is_set=True)],
        )
        self._nesting.add(
            [
                "use_dora",
                "lora_r",
                "lora_alpha",
                "lora_dropout",
                "use_rslora",
                "lora_target_modules",
                "lora_unfreeze_layers",
            ],
            [Dependency(key="lora", value=False, is_set=False)],
        )
        self._nesting.add(
            ["min_learning_rate_ratio"],
            [Dependency(key="schedule", value="Constant", is_set=False)],
        )


@dataclass
class ConfigNLPCausalLMTokenizer(DefaultConfig):
    max_length: int = 512
    add_prompt_answer_tokens: bool = False
    padding_quantile: float = 1.0
    tokenizer_kwargs: str = '{"use_fast": true, "add_prefix_space": false}'
    _tokenizer_mask_token_id: int = 0
    _tokenizer_eos_token: str = "<EOS>"
    _vocab_length: int = 0
    _stop_words_ids: List[int] = field(default_factory=list)

    def __post_init__(self):
        super().__post_init__()
        self._possible_values["max_length"] = (32, 1024 * 16, 32)
        self._possible_values["padding_quantile"] = (0, 1, 0.01)

        self._grid_search_values["max_length"] = (256, 512, 1024)

        self._grid_search_iscustom["max_length"] = True

        self._padding_side = "left"


@dataclass
class ConfigNLPCausalLMArchitecture(DefaultConfig):
    model_class: Any = text_causal_language_modeling_model.Model
    pretrained: bool = True

    backbone_dtype: str = "int4"
    gradient_checkpointing: bool = True
    intermediate_dropout: float = 0
    pretrained_weights: str = ""

    def __post_init__(self):
        super().__post_init__()

        self._possible_values["backbone_dtype"] = possible_values.String(
            values=("float32", "bfloat16", "float16", "int8", "int4"),
            allow_custom=False,
        )
        self._possible_values["intermediate_dropout"] = (0, 0.5, 0.05)

        self._grid_search_values["intermediate_dropout"] = (0.0, 0.05, 0.1, 0.15)

        self._grid_search_iscustom["intermediate_dropout"] = True

        self._visibility["model_class"] = -1
        self._visibility["pretrained"] = -1


@dataclass
class ConfigNLPAugmentation(DefaultConfig):
    nlp_augmentations_class: Any = BaseNLPAug
    token_mask_probability: float = 0.0
    skip_parent_probability: float = 0.0
    random_parent_probability: float = 0.0
    neftune_noise_alpha: float = 0.0

    def __post_init__(self):
        super().__post_init__()
        self._possible_values["token_mask_probability"] = (0.0, 0.9, 0.05)
        self._possible_values["skip_parent_probability"] = (0.0, 1.0, 0.05)
        self._possible_values["random_parent_probability"] = (0.0, 1.0, 0.05)
        self._possible_values["neftune_noise_alpha"] = (0.0, 15, 0.05)

        self._grid_search_values["token_mask_probability"] = (0.0, 0.1, 0.2, 0.3)
        self._grid_search_values["skip_parent_probability"] = (0.0, 0.1, 0.2, 0.3)
        self._grid_search_values["random_parent_probability"] = (0.0, 0.1, 0.2, 0.3)
        self._grid_search_values["neftune_noise_alpha"] = (0.0, 5, 10, 15)

        self._grid_search_iscustom["token_mask_probability"] = True
        self._grid_search_iscustom["skip_parent_probability"] = True
        self._grid_search_iscustom["random_parent_probability"] = True
        self._grid_search_iscustom["neftune_noise_alpha"] = True

        self._visibility["nlp_augmentations_class"] = -1


@dataclass
class ConfigNLPCausalLMPrediction(DefaultConfig):
    metric_class: Any = text_causal_language_modeling_metrics.Metrics
    metric: str = "GPT"
    metric_gpt_model: str = "gpt-3.5-turbo-0301"
    metric_gpt_template: str = "general"

    min_length_inference: int = 2
    max_length_inference: int = 256
    max_time: float = 0
    batch_size_inference: int = 0

    do_sample: bool = False
    num_beams: int = 1
    temperature: float = 0.0
    repetition_penalty: float = 1.0
    stop_tokens: str = ""
    top_k: int = 0
    top_p: float = 1.0

    num_history: int = 4

    def __post_init__(self):
        super().__post_init__()
        self._possible_values["metric"] = self.metric_class.names()

        self._possible_values["metric_gpt_model"] = possible_values.String(
            values=(
                "gpt-3.5-turbo-0301",
                "gpt-3.5-turbo-0613",
                "gpt-4-0314",
                "gpt-4-0613",
                "gpt-4-1106-preview",
            ),
            allow_custom=True,
        )
        self._possible_values["metric_gpt_template"] = possible_values.String(
            values=tuple(f.split(".")[0] for f in os.listdir("prompts"))
        )

        self._possible_values["batch_size_inference"] = (0, 512, 1)
        self._possible_values["min_length_inference"] = (0, 1024, 1)
        self._possible_values["max_length_inference"] = (1, 4096, 1)
        self._possible_values["max_time"] = (0.0, 600.0, 1.0)

        self._possible_values["num_beams"] = (1, 4, 1)
        self._possible_values["temperature"] = (0, 10, 0.05)
        self._possible_values["repetition_penalty"] = (1, 10, 0.025)
        self._possible_values["top_k"] = (0, 100, 1)
        self._possible_values["top_p"] = (0.5, 1, 0.05)
        self._possible_values["num_history"] = (1, 50, 1)

        self._visibility["metric_class"] = -1
        # possible values for num_history are only used in chatbot tab
        self._visibility["num_history"] = -1

        self._nesting.add(
            ["metric_gpt_model", "metric_gpt_template"],
            [Dependency(key="metric", value="GPT", is_set=True)],
        )


@dataclass
class ConfigNLPCausalLMEnvironment(DefaultConfig):
    gpus: Tuple[str, ...] = tuple(str(x) for x in range(torch.cuda.device_count()))

    mixed_precision: bool = True
    mixed_precision_dtype: str = "bfloat16"

    compile_model: bool = False
    use_deepspeed: bool = False
    deepspeed_method: str = "ZeRO2"
    deepspeed_allgather_bucket_size: int = int(1e6)
    deepspeed_reduce_bucket_size: int = int(1e6)
    deepspeed_stage3_prefetch_bucket_size: int = int(1e6)
    deepspeed_stage3_param_persistence_threshold: int = int(1e6)
    #     deepspeed_offload_optimizer: bool = False
    #     deepspeed_stage3_max_live_parameters: int = 1e9
    #     deepspeed_stage3_max_reuse_distance: int = 1e9

    find_unused_parameters: bool = False
    trust_remote_code: bool = True
    huggingface_branch: str = "main"
    number_of_workers: int = 4
    seed: int = -1

    _seed: int = 0  # internal seed set in train.py (equals seed if seed is not -1)
    _distributed: bool = False
    _distributed_inference: bool = True
    _local_rank: int = 0
    _world_size: int = 1
    _curr_step: int = 0
    _step_log_denominator: int = 1
    _curr_val_step: int = 0
    _rank: int = 0  # global rank
    _device: str = "cuda"
    _cpu_comm: Any = None
    _model_card_template: str = "text_causal_language_modeling_model_card_template.md"
    _summary_card_template: str = (
        "text_causal_language_modeling_experiment_summary_card_template.md"
    )

    def __post_init__(self):
        super().__post_init__()
        self._possible_values["gpus"] = possible_values.String(
            values=tuple(
                [(str(x), f"GPU #{x+1}") for x in range(torch.cuda.device_count())]
            ),
            allow_custom=False,
        )

        self._possible_values["mixed_precision_dtype"] = possible_values.String(
            values=("bfloat16", "float16"),
            allow_custom=False,
        )

        self._possible_values["number_of_workers"] = (1, multiprocessing.cpu_count(), 1)
        self._possible_values["seed"] = possible_values.Number(step=1, min=-1)
        self._possible_values["deepspeed_method"] = ["ZeRO2", "ZeRO3"]
        self._possible_values["deepspeed_allgather_bucket_size"] = (
            possible_values.Number(step=1, min=1e6)
        )
        self._possible_values["deepspeed_reduce_bucket_size"] = possible_values.Number(
            step=1, min=1e6
        )
        self._possible_values["deepspeed_stage3_prefetch_bucket_size"] = (
            possible_values.Number(step=1, min=1e6)
        )
        self._possible_values["deepspeed_stage3_param_persistence_threshold"] = (
            possible_values.Number(step=1, min=1e6)
        )
        self._possible_values["deepspeed_stage3_max_live_parameters"] = (
            possible_values.Number(step=1, min=1e6)
        )
        self._possible_values["deepspeed_stage3_max_reuse_distance"] = (
            possible_values.Number(step=1, min=1e6)
        )

        self._nesting.add(
            [
                "mixed_precision_dtype",
            ],
            [Dependency(key="mixed_precision", value=True, is_set=True)],
        )
        self._nesting.add(
            [
                "deepspeed_method",
                "deepspeed_reduce_bucket_size",
            ],
            [Dependency(key="use_deepspeed", value=True, is_set=True)],
        )
        self._nesting.add(
            [
                "deepspeed_allgather_bucket_size",
            ],
            [
                Dependency(key="use_deepspeed", value=True, is_set=True),
                Dependency(key="deepspeed_method", value="ZeRO2", is_set=True),
            ],
        )
        self._nesting.add(
            [
                "deepspeed_stage3_prefetch_bucket_size",
                "deepspeed_stage3_param_persistence_threshold",
                # "deepspeed_offload_optimizer",
            ],
            [
                Dependency(key="use_deepspeed", value=True, is_set=True),
                Dependency(key="deepspeed_method", value="ZeRO3", is_set=True),
            ],
        )
        # self._nesting.add(
        #     [
        #         "deepspeed_stage3_max_live_parameters",
        #         "deepspeed_stage3_max_reuse_distance",
        #     ],
        #     [Dependency(key="deepspeed_offload_optimizer", value=False, is_set=False)],  # noqa: E501
        # )


@dataclass
class ConfigNLPCausalLMLogging(DefaultConfig):
    log_step_size: str = "absolute"
    log_all_ranks: bool = False
    logger: str = "None"
    neptune_project: str = ""
    wandb_project: str = ""
    wandb_entity: str = ""
    _neptune_debug: bool = False

    plots_class: Any = text_causal_language_modeling_plots.Plots

    # the actual logger, will be set dynamically at runtime
    _logger: Any = None

    def __post_init__(self):
        super().__post_init__()
        self._possible_values["log_step_size"] = possible_values.String(
            values=(
                ("absolute", "Absolute"),
                ("relative", "Relative"),
            ),
            allow_custom=False,
        )
        self._possible_values["logger"] = ExternalLoggers.names()

        self._nesting.add(
            ["neptune_project"],
            [Dependency(key="logger", value="Neptune", is_set=True)],
        )
        self._nesting.add(
            ["wandb_project", "wandb_entity"],
            [Dependency(key="logger", value="W&B", is_set=True)],
        )

        self._visibility["plots_class"] = -1


@dataclass
class ConfigProblemBase(DefaultConfigProblemBase):
    output_directory: str = f"output/{os.path.basename(__file__).split('.')[0]}"
    experiment_name: str = field(default_factory=generate_experiment_name)
    llm_backbone: str = (
        "h2oai/h2o-danube3-500m-base"
        if "h2oai/h2o-danube3-500m-base" in default_cfg.default_causal_language_models
        else default_cfg.default_causal_language_models[0]
    )

    dataset: ConfigNLPCausalLMDataset = field(default_factory=ConfigNLPCausalLMDataset)
    tokenizer: ConfigNLPCausalLMTokenizer = field(
        default_factory=ConfigNLPCausalLMTokenizer
    )
    architecture: ConfigNLPCausalLMArchitecture = field(
        default_factory=ConfigNLPCausalLMArchitecture
    )
    training: ConfigNLPCausalLMTraining = field(
        default_factory=ConfigNLPCausalLMTraining
    )
    augmentation: ConfigNLPAugmentation = field(default_factory=ConfigNLPAugmentation)
    prediction: ConfigNLPCausalLMPrediction = field(
        default_factory=ConfigNLPCausalLMPrediction
    )
    environment: ConfigNLPCausalLMEnvironment = field(
        default_factory=ConfigNLPCausalLMEnvironment
    )
    logging: ConfigNLPCausalLMLogging = field(default_factory=ConfigNLPCausalLMLogging)

    def __post_init__(self):
        super().__post_init__()

        self._visibility["output_directory"] = -1

        self._possible_values["llm_backbone"] = possible_values.String(
            values=default_cfg.default_causal_language_models,
            allow_custom=True,
        )

    def check(self) -> Dict[str, List]:
        # Define returned dictionary of errors/warnings
        errors: Dict[str, List] = {"title": [], "message": [], "type": []}
        logger.debug("Checking for common errors in the configuration.")
        try:
            sanity_check(self)
        except AssertionError as exception:
            logger.error(f"Experiment start. Sanity check failed: {exception}")
            logger.error(f"Error while validating data: {exception}", exc_info=True)
            # Remove end-of-line from exception
            exception_str = str(exception).replace("\n", " ")
            errors["title"] += ["Dataset Validation Error"]
            errors["message"] += [exception_str]
            errors["type"].append("error")

        if self.prediction.temperature > 0 and not self.prediction.do_sample:
            errors["title"] += ["Do sample needs to be enabled for temperature > 0"]
            errors["message"] += [
                "Please enable do sample if you want to use temperature > 0."
            ]
            errors["type"].append("warning")
        if self.prediction.temperature == 0 and self.prediction.do_sample:
            errors["title"] += ["Temperature needs to be > 0 for do sample"]
            errors["message"] += [
                "Please increase temperature if you want to use do sample."
            ]
            errors["type"].append("warning")
        return errors