File size: 8,321 Bytes
5caedb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import logging
import os
import shutil
from tempfile import NamedTemporaryFile

from bokeh.resources import Resources as BokehResources
from h2o_wave import Q, ui

from llm_studio.app_utils.config import default_cfg
from llm_studio.app_utils.db import Database, Dataset
from llm_studio.app_utils.default_datasets import (
    prepare_default_dataset_causal_language_modeling,
    prepare_default_dataset_classification_modeling,
    prepare_default_dataset_dpo_modeling,
    prepare_default_dataset_regression_modeling,
)
from llm_studio.app_utils.sections.common import interface
from llm_studio.app_utils.setting_utils import load_user_settings_and_secrets
from llm_studio.app_utils.utils import (
    get_data_dir,
    get_database_dir,
    get_download_dir,
    get_output_dir,
    get_user_db_path,
    get_user_name,
)
from llm_studio.src.utils.config_utils import load_config_py, save_config_yaml

logger = logging.getLogger(__name__)


async def import_default_data(q: Q):
    """Imports default data"""

    try:
        if q.client.app_db.get_dataset(1) is None:
            logger.info("Downloading default dataset...")
            q.page["meta"].dialog = ui.dialog(
                title="Creating default datasets",
                blocking=True,
                items=[ui.progress(label="Please be patient...")],
            )
            await q.page.save()

            dataset = prepare_oasst(q)
            q.client.app_db.add_dataset(dataset)
            dataset = prepare_dpo(q)
            q.client.app_db.add_dataset(dataset)
            dataset = prepare_imdb(q)
            q.client.app_db.add_dataset(dataset)
            dataset = prepare_helpsteer(q)
            q.client.app_db.add_dataset(dataset)

    except Exception as e:
        q.client.app_db._session.rollback()
        logger.warning(f"Could not download default dataset: {e}")
        pass


def prepare_oasst(q: Q) -> Dataset:
    path = f"{get_data_dir(q)}/oasst"
    if os.path.exists(path):
        shutil.rmtree(path)
    os.makedirs(path, exist_ok=True)
    df = prepare_default_dataset_causal_language_modeling(path)
    cfg = load_config_py(
        config_path=os.path.join("llm_studio/python_configs", default_cfg.cfg_file),
        config_name="ConfigProblemBase",
    )
    cfg.dataset.train_dataframe = os.path.join(path, "train_full.pq")
    cfg.dataset.prompt_column = ("instruction",)
    cfg.dataset.answer_column = "output"
    cfg.dataset.parent_id_column = "None"
    cfg_path = os.path.join(path, f"{default_cfg.cfg_file}.yaml")
    save_config_yaml(cfg_path, cfg)
    dataset = Dataset(
        id=1,
        name="oasst",
        path=path,
        config_file=cfg_path,
        train_rows=df.shape[0],
    )
    return dataset


def prepare_dpo(q: Q) -> Dataset:
    path = f"{get_data_dir(q)}/dpo"
    if os.path.exists(path):
        shutil.rmtree(path)
    os.makedirs(path, exist_ok=True)
    train_df = prepare_default_dataset_dpo_modeling()
    train_df.to_parquet(os.path.join(path, "train.pq"), index=False)

    from llm_studio.python_configs.text_dpo_modeling_config import ConfigDPODataset
    from llm_studio.python_configs.text_dpo_modeling_config import (
        ConfigProblemBase as ConfigProblemBaseDPO,
    )

    cfg: ConfigProblemBaseDPO = ConfigProblemBaseDPO(
        dataset=ConfigDPODataset(
            train_dataframe=os.path.join(path, "train.pq"),
            system_column="system",
            prompt_column=("question",),
            answer_column="chosen",
            rejected_answer_column="rejected",
        ),
    )

    cfg_path = os.path.join(path, "text_dpo_modeling_config.yaml")
    save_config_yaml(cfg_path, cfg)
    dataset = Dataset(
        id=2,
        name="dpo",
        path=path,
        config_file=cfg_path,
        train_rows=train_df.shape[0],
    )
    return dataset


def prepare_imdb(q: Q) -> Dataset:
    path = f"{get_data_dir(q)}/imdb"
    if os.path.exists(path):
        shutil.rmtree(path)
    os.makedirs(path, exist_ok=True)
    train_df = prepare_default_dataset_classification_modeling()
    train_df.to_parquet(os.path.join(path, "train.pq"), index=False)

    from llm_studio.python_configs.text_causal_classification_modeling_config import (
        ConfigNLPCausalClassificationDataset,
    )
    from llm_studio.python_configs.text_causal_classification_modeling_config import (
        ConfigProblemBase as ConfigProblemBaseClassification,
    )

    cfg: ConfigProblemBaseClassification = ConfigProblemBaseClassification(
        dataset=ConfigNLPCausalClassificationDataset(
            train_dataframe=os.path.join(path, "train.pq"),
            prompt_column=("text",),
            answer_column=("label",),
        ),
    )

    cfg_path = os.path.join(path, "text_causal_classification_modeling_config.yaml")
    save_config_yaml(cfg_path, cfg)
    dataset = Dataset(
        id=3,
        name="imdb",
        path=path,
        config_file=cfg_path,
        train_rows=train_df.shape[0],
    )
    return dataset


def prepare_helpsteer(q: Q) -> Dataset:
    path = f"{get_data_dir(q)}/helpsteer"
    if os.path.exists(path):
        shutil.rmtree(path)
    os.makedirs(path, exist_ok=True)
    train_df = prepare_default_dataset_regression_modeling()
    train_df.to_parquet(os.path.join(path, "train.pq"), index=False)

    from llm_studio.python_configs.text_causal_regression_modeling_config import (
        ConfigNLPCausalRegressionDataset,
    )
    from llm_studio.python_configs.text_causal_regression_modeling_config import (
        ConfigProblemBase as ConfigProblemBaseRegression,
    )

    cfg: ConfigProblemBaseRegression = ConfigProblemBaseRegression(
        dataset=ConfigNLPCausalRegressionDataset(
            train_dataframe=os.path.join(path, "train.pq"),
            prompt_column=("prompt", "response"),
            answer_column=(
                "helpfulness",
                "correctness",
                "coherence",
                "complexity",
                "verbosity",
            ),
        ),
    )

    cfg_path = os.path.join(path, "text_causal_regression_modeling_config.yaml")
    save_config_yaml(cfg_path, cfg)
    dataset = Dataset(
        id=4,
        name="helpsteer",
        path=path,
        config_file=cfg_path,
        train_rows=train_df.shape[0],
    )
    return dataset


async def initialize_client(q: Q) -> None:
    """Initialize the client."""

    if not q.client.client_initialized:
        logger.info("Initializing client ...")
        q.client.delete_cards = set()
        q.client.delete_cards.add("init_app")

        os.makedirs(get_data_dir(q), exist_ok=True)
        os.makedirs(get_database_dir(q), exist_ok=True)
        os.makedirs(get_output_dir(q), exist_ok=True)
        os.makedirs(get_download_dir(q), exist_ok=True)

        db_path = get_user_db_path(q)

        q.client.app_db = Database(db_path)

        logger.info(f"User name: {get_user_name(q)}")

        q.client.client_initialized = True

        q.client["mode_curr"] = "full"
        load_user_settings_and_secrets(q)
        await interface(q)

        await import_default_data(q)
        q.args.__wave_submission_name__ = default_cfg.start_page
        logger.info("Initializing client ... done")

    return


async def initialize_app(q: Q) -> None:
    """
    Initialize the app.

    This function is called once when the app is started and stores values in q.app.
    """

    if not q.app.initialized:
        logger.info("Initializing app ...")

        icons_pth = "llm_studio/app_utils/static/"
        (q.app["icon_path"],) = await q.site.upload([f"{icons_pth}/icon_300.svg"])

        script_sources = []

        with NamedTemporaryFile(mode="w", suffix=".min.js") as f:
            # write all Bokeh scripts to one file to make sure
            # they are loaded sequentially
            for js_raw in BokehResources(mode="inline").js_raw:
                f.write(js_raw)
                f.write("\n")

            (url,) = await q.site.upload([f.name])
            script_sources.append(url)

        q.app["script_sources"] = script_sources
        q.app["initialized"] = True
        q.app.version = default_cfg.version
        q.app.name = default_cfg.name
        q.app.heap_mode = default_cfg.heap_mode

        logger.info("Initializing app ... done")