Update app.py
Browse files
app.py
CHANGED
@@ -1,251 +1,71 @@
|
|
1 |
-
import io
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
[
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
results = model.predict(image_input)
|
75 |
-
|
76 |
-
render = render_result(model=model, image=image_input, result=results[0])
|
77 |
-
|
78 |
-
final_str = ""
|
79 |
-
final_str_abv = ""
|
80 |
-
final_str_else = ""
|
81 |
-
|
82 |
-
for result in results:
|
83 |
-
boxes = result.boxes.cpu().numpy()
|
84 |
-
for i, box in enumerate(boxes):
|
85 |
-
# r = box.xyxy[0].astype(int)
|
86 |
-
coordinates = box.xyxy[0].astype(int)
|
87 |
-
try:
|
88 |
-
label = YOLOV8_LABELS[int(box.cls)]
|
89 |
-
except:
|
90 |
-
label = "ERROR"
|
91 |
-
try:
|
92 |
-
confi = float(box.conf)
|
93 |
-
except:
|
94 |
-
confi = 0.0
|
95 |
-
# final_str_abv += str() + "__" + str(box.cls) + "__" + str(box.conf) + "__" + str(box) + "\n"
|
96 |
-
if confi >= threshold:
|
97 |
-
final_str_abv += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"
|
98 |
-
else:
|
99 |
-
final_str_else += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"
|
100 |
-
|
101 |
-
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
|
102 |
-
|
103 |
-
return render, final_str
|
104 |
-
else:
|
105 |
-
|
106 |
-
#Extract model and feature extractor
|
107 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
108 |
-
if 'detr' in model_name:
|
109 |
-
|
110 |
-
model = DetrForObjectDetection.from_pretrained(model_name)
|
111 |
-
|
112 |
-
elif 'yolos' in model_name:
|
113 |
-
|
114 |
-
model = YolosForObjectDetection.from_pretrained(model_name)
|
115 |
-
|
116 |
-
tb_label = ""
|
117 |
-
if validators.url(url_input):
|
118 |
-
image = Image.open(requests.get(url_input, stream=True).raw)
|
119 |
-
tb_label = "Confidence Values URL"
|
120 |
-
|
121 |
-
elif image_input:
|
122 |
-
image = image_input
|
123 |
-
tb_label = "Confidence Values Upload"
|
124 |
-
|
125 |
-
#Make prediction
|
126 |
-
processed_output_list = make_prediction(image, feature_extractor, model)
|
127 |
-
# print("After make_prediction" + str(processed_output_list))
|
128 |
-
processed_outputs = processed_output_list[0]
|
129 |
-
|
130 |
-
#Visualize prediction
|
131 |
-
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
132 |
-
|
133 |
-
# return [viz_img, processed_outputs]
|
134 |
-
# print(type(viz_img))
|
135 |
-
|
136 |
-
final_str_abv = ""
|
137 |
-
final_str_else = ""
|
138 |
-
for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True):
|
139 |
-
box = [round(i, 2) for i in box.tolist()]
|
140 |
-
if score.item() >= threshold:
|
141 |
-
final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
|
142 |
-
else:
|
143 |
-
final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
|
144 |
-
|
145 |
-
# https://docs.python.org/3/library/string.html#format-examples
|
146 |
-
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
|
147 |
-
|
148 |
-
return viz_img, final_str
|
149 |
-
|
150 |
-
def set_example_image(example: list) -> dict:
|
151 |
-
return gr.Image(value=example[0]["path"])
|
152 |
-
|
153 |
-
def set_example_url(example: list) -> dict:
|
154 |
-
return gr.Textbox(value=example[0]["path"])
|
155 |
-
|
156 |
-
|
157 |
-
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
|
158 |
-
|
159 |
-
description = """
|
160 |
-
Links to HuggingFace Models:
|
161 |
-
|
162 |
-
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
|
163 |
-
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
|
164 |
-
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
|
165 |
-
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
|
166 |
-
- [facebook/detr-resnet-101-dc5](https://huggingface.co/facebook/detr-resnet-101-dc5)
|
167 |
-
- [hustvl/yolos-small-300](https://huggingface.co/hustvl/yolos-small-300)
|
168 |
-
- [mshamrai/yolov8x-visdrone](https://huggingface.co/mshamrai/yolov8x-visdrone)
|
169 |
-
|
170 |
-
"""
|
171 |
-
|
172 |
-
models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny','facebook/detr-resnet-101-dc5', 'hustvl/yolos-small-300', 'mshamrai/yolov8x-visdrone']
|
173 |
-
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
|
174 |
-
|
175 |
-
# twitter_link = """
|
176 |
-
# [](https://twitter.com/nickmuchi)
|
177 |
-
# """
|
178 |
-
|
179 |
-
css = '''
|
180 |
-
h1#title {
|
181 |
-
text-align: center;
|
182 |
-
}
|
183 |
-
'''
|
184 |
-
demo = gr.Blocks(css=css)
|
185 |
-
|
186 |
-
|
187 |
-
def changing():
|
188 |
-
# https://discuss.huggingface.co/t/how-to-programmatically-enable-or-disable-components/52350/4
|
189 |
-
return gr.Button('Detect', interactive=True), gr.Button('Detect', interactive=True)
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
with demo:
|
194 |
-
gr.Markdown(title)
|
195 |
-
gr.Markdown(description)
|
196 |
-
# gr.Markdown(twitter_link)
|
197 |
-
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
|
198 |
-
|
199 |
-
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
with gr.Tabs():
|
204 |
-
with gr.TabItem('Image URL'):
|
205 |
-
with gr.Row():
|
206 |
-
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
|
207 |
-
img_output_from_url = gr.Image(height=650,width=650)
|
208 |
-
|
209 |
-
with gr.Row():
|
210 |
-
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
|
211 |
-
|
212 |
-
url_but = gr.Button('Detect', interactive=False)
|
213 |
-
|
214 |
-
with gr.TabItem('Image Upload'):
|
215 |
-
with gr.Row():
|
216 |
-
img_input = gr.Image(type='pil')
|
217 |
-
img_output_from_upload= gr.Image(height=650,width=650)
|
218 |
-
|
219 |
-
with gr.Row():
|
220 |
-
example_images = gr.Dataset(components=[img_input],
|
221 |
-
samples=[[path.as_posix()]
|
222 |
-
for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) # Can't get case_sensitive to work
|
223 |
-
|
224 |
-
img_but = gr.Button('Detect', interactive=False)
|
225 |
-
|
226 |
-
|
227 |
-
# output_text1 = gr.outputs.Textbox(label="Confidence Values")
|
228 |
-
output_text1 = gr.components.Textbox(label="Confidence Values")
|
229 |
-
# https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
|
230 |
-
|
231 |
-
options.change(fn=changing, inputs=[], outputs=[img_but, url_but])
|
232 |
-
|
233 |
-
|
234 |
-
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
|
235 |
-
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
|
236 |
-
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
|
237 |
-
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
|
238 |
-
|
239 |
-
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
|
240 |
-
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
241 |
-
|
242 |
-
|
243 |
-
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|
244 |
-
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
|
245 |
-
|
246 |
-
|
247 |
-
# gr.Markdown("")
|
248 |
-
|
249 |
-
|
250 |
-
# demo.launch(enable_queue=True)
|
251 |
-
demo.launch() #removed (share=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
# Load the YOLOS object detection model
|
7 |
+
detector = pipeline("object-detection", model="hustvl/yolos-small")
|
8 |
+
|
9 |
+
# Define some colors to differentiate classes
|
10 |
+
COLORS = ["red", "blue", "green", "orange", "purple", "yellow", "cyan", "magenta"]
|
11 |
+
|
12 |
+
# Helper function to assign color per label
|
13 |
+
def get_color_for_label(label):
|
14 |
+
return COLORS[hash(label) % len(COLORS)]
|
15 |
+
|
16 |
+
# Main function: detect, draw, and return outputs
|
17 |
+
def detect_and_draw(image, threshold):
|
18 |
+
results = detector(image)
|
19 |
+
image = image.convert("RGB")
|
20 |
+
draw = ImageDraw.Draw(image)
|
21 |
+
|
22 |
+
try:
|
23 |
+
font = ImageFont.truetype("arial.ttf", 16)
|
24 |
+
except:
|
25 |
+
font = ImageFont.load_default()
|
26 |
+
|
27 |
+
annotations = []
|
28 |
+
|
29 |
+
for obj in results:
|
30 |
+
score = obj["score"]
|
31 |
+
if score < threshold:
|
32 |
+
continue
|
33 |
+
|
34 |
+
label = f"{obj['label']} ({score:.2f})"
|
35 |
+
box = obj["box"]
|
36 |
+
color = get_color_for_label(obj["label"])
|
37 |
+
|
38 |
+
draw.rectangle(
|
39 |
+
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])],
|
40 |
+
outline=color,
|
41 |
+
width=3,
|
42 |
+
)
|
43 |
+
|
44 |
+
draw.text((box["xmin"] + 5, box["ymin"] + 5), label, fill=color, font=font)
|
45 |
+
|
46 |
+
box_coords = (box["xmin"], box["ymin"], box["xmax"], box["ymax"])
|
47 |
+
annotations.append((box_coords, label))
|
48 |
+
|
49 |
+
# Save image for download
|
50 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
51 |
+
image.save(temp_file.name)
|
52 |
+
|
53 |
+
# ✅ Return the (image, annotations) tuple and the path to the saved image
|
54 |
+
return (image, annotations), temp_file.name
|
55 |
+
|
56 |
+
# Gradio UI setup
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=detect_and_draw,
|
59 |
+
inputs=[
|
60 |
+
gr.Image(type="pil", label="Upload Image"),
|
61 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"),
|
62 |
+
],
|
63 |
+
outputs=[
|
64 |
+
gr.AnnotatedImage(label="Detected Image"),
|
65 |
+
gr.File(label="Download Processed Image"),
|
66 |
+
],
|
67 |
+
title="YOLOS Object Detection",
|
68 |
+
description="Upload an image to detect objects using the YOLOS-small model. Adjust the confidence threshold using the slider.",
|
69 |
+
)
|
70 |
+
|
71 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|